
Model-based Dev. Tool

MC-Verifier

 Back-to-Back (B2B) Test Tool for meeting ISO 26262 requirements

 Model-to-Model, Model-to-Software, Model-to-Target-Code B2B Testing

 Identify test error location (subsystem) on Simulink model

 Trace test errors over time on Simulink model

 Code Coverage (Statement, Branch, MC/DC)

“MC-Verifier” is an integrated test tool for performing model-based development Back-to-Back testing. Debug and verify

consistency between model, software, and target code implementation at a variety of development phases.

Integrated Model/Code Back-to-Back Test Tool

Model, Software & Target Code

B2B Testing, Evaluation & Reporting

MC-Verifier can perform B2B testing with models (MIL), software (SIL),

& target code (PIL). Evaluate B2B test results to detect and report error

locations. Import test cases created from other MBD tools for B2B

testing.

Note: GAIO’s own MPU simulator is built-in for target code testing. Test

hardware is not required.

MATLAB/Simulink Integration

MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features

can be executed from the MATLAB/Simulink GUI, command-line or

MATLAB scripts.

Identify Error Location on Simulink model

The output values of all model subsystem signals, and all code

variables are recorded during testing. After testing, the model signal and

code variable output values can be analyzed over time in order to locate

errors.

The acceptable error range can be specified by percent. Subsystems

that exceed the acceptable error range will be highlighted on the

Simulink model in order to efficiently locate and correct errors. This

feature for locating errors even works for models that include feedbacks.

[List of Terms] MIL = Model In the Loop

MC= Model and Code SIL = Software (C code) In the Loop

B2B = Back-to-Back PIL = Processor (Target object code) In the Loop

Code Debugging Features

Code debugging features included with the MPU simulator can be used

to analyze errors for model-to-target-code tests. Set breakpoints in the

code, verifying changes in variable values, register values, memory

values, etc.

Code Coverage

Code coverage (statement, Branch, MC/DC) can be measured for

model-to-target-code tests. Detect code structure issues through code

coverage testing and fulfill ISO 26262 code coverage requirements.

Model-Based Development - B2B Test Use Cases

Specification & Implementation Model

Perform B2B testing with the specification and

implementation model for verification. Evaluate range

of error between floating-point model and fixed-point

model.

Implementation Model & Code

Perform B2B testing with the implementation model

and auto-generated code for verification. Detect

scaling, variable bit-width, and auto-coder setting

related issues.

Implementation Model & Target Code

Perform B2B testing with the implementation model and

the target code during the implementation phase to

evaluate in a target environment as recommended by

ISO 26262. Detect MPU structure, cross compiler

optimization and other target code related issues.

Control Model, System Designers

 MATLAB/Simulink algorithm design

 MATLAB/Simulink model conversion

 Evaluate range of error between models

Code Developers

 Model modifications for code generation

 Detect auto-coder related issues

Code Implementation, Testers

 MPU, compiler related issues, rounding errors

 Code coverage

 ISO 26262 compliant testing

Specification

Model

Implementation

Model

C Source

Target Code

Convert/Design

Auto-code

Compile

B2B

B2B

B2B

Identify Errors

(on Simulink model)

Debug

Source Code

Measure

Code Coverage

Model, Software, Target-code

B2B Test Execution and

Test Report Creation

MC-Verifier B2B Test Framework

In Development
June 2015

Release

*Model = MATLAB/Simulink model

Sales Division

Tennouzu First Tower 25F

2-2-4 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan

E-mail: info@gaio.co.jp WEB: http://www.gaio.com/

Jan. 2015

MC-Verifier Features (In development, actual features may differ)

MATLAB/Simulink Integration

MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features

such as model, software, target-code B2B testing and report

generation can be executed from the MATLAB/Simulink GUI,

command-line or MATLAB scripts.

Code Debugging

Target code B2B tests are executed on GAIO’s MPU simulator

(Instruction Set Simulator). Test and debug the target code without

needing actual hardware. Set breakpoints in the code, verifying changes

in variable values, register values, memory values, etc.

Error Location Analysis

The output values of signal lines and code variables for the selected

subsystem are recorded during testing. After testing, signal line and

code variable values can be analyzed over time in order to locate errors.

This feature for locating errors even works for models that include

feedbacks.

Analyze the Error Range

Evaluate the error range over time for model signal lines and code

variable values. Set the allowed error range by percent, then graph and

highlight items that exceed the allowed error range.

Blocks are highlighted according to error range

Select the time on the graph

0.01s

0.02s

Block highlighted colors indicate the degree of error

(From small to large: BLUE -> GREEN -> RED)

Use to locate the cause of errors when they first occur

Code Coverage

Code coverage (statement, Branch, MC/DC) can be measured for

model-to-target-code tests. In this way, detect code structure issues

through code coverage testing and fulfill ISO 26262 code coverage

requirements.

Import Test Cases from other MBD Tools

Test case data created from other MDB tools can be easily imported for

B2B testing in CSV, M-file and other general formats.

Test Reports

Test reports including B2B test results, tested subsystem/function list

and code coverage results can be output to XML, HTML, CSV, XLS(X)

formats. Easily create test reports needed for functional safety

certification.

Error Location Found

