Model-based

oo
RO

TECHNOLOGY

| |
M C -ve r I fl e r Integrated Model/Code Back-to-Back Test Tool
—————————————————————————————

= Back-to-Back (B2B) Test Tool for meeting ISO 26262 requirements
Model-to-Model, Model-to-Software, Model-to-Target-Code B2B Testing
Identify test error location (subsystem) on Simulink model

Trace test errors over time on Simulink model

Code Coverage (Statement, Branch, MC/DC)

“MC-Verifier” is an integrated test tool for performing model-based development Back-to-Back testing. Debug and verify
consistency between model, software, and target code implementation at a variety of development phases.

In Development
June 2015
Release

MIL = Model In the Loop
SIL = Software (C code) In the Loop
PIL = Processor (Target object code) In the Loop

MC-Verifier B2B Test Framework

*Model = MATLAB/Simulink model

Specification
Model
i Convert/Desigl
Implementation
Model
l Auto-code
C Source

Comp|le

[List of Terms]
MC= Model and Code
B2B = Back-to-Back

Model, Software & Target Code

B2B Testing, Evaluation & Reporting

MC-Verifier can perform B2B testing with models (MIL), software (SIL),
& target code (PIL). Evaluate B2B test results to detect and report error
locations. Import test cases created from other MBD tools for B2B
testing.

Note: GAIO’s own MPU simulator is built-in for target code testing. Test
hardware is not required.

Identify Errors
(on Simulink model)

Identify Error Location on Simulink model

The output values of all model subsystem signals, and all code
variables are recorded during testing. After testing, the model signal and
code variable output values can be analyzed over time in order to locate
errors.

Debug
Source Code

The acceptable error range can be specified by percent. Subsystems
that exceed the acceptable error range will be highlighted on the
Simulink model in order to efficiently locate and correct errors. This
feature for locating errors even works for models that include feedbacks.

Measure
Code Coverage

%_

Target Code

)

Code Debugging Features

Code debugging features included with the MPU simulator can be used
to analyze errors for model-to-target-code tests. Set breakpoints in the
code, verifying changes in variable values, register values, memory
values, etc.

Model, Software, Target-code
B2B Test Execution and
Test Report Creation

MATLAB/Simulink Integration

MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features
can be executed from the MATLAB/Simulink GUI, command-line or
MATLAB scripts.

Code Coverage

Code coverage (statement, Branch, MC/DC) can be measured for
model-to-target-code tests. Detect code structure issues through code
coverage testing and fulfill ISO 26262 code coverage requirements.

Model-Based Development - B2B Test Use Cases

Specification & Implementation Model Implementation Model & Code

Perform B2B testing with the specification and
implementation model for verification. Evaluate range
of error between floating-point model and fixed-point

model. related issues.

Control Model, System Designers Code Developers
MATLAB/Simulink algorithm design
MATLAB/Simulink model conversion

Evaluate range of error between models

Detect auto-coder related issues

Perform B2B testing with the implementation model
and auto-generated code for verification. Detect
scaling, variable bit-width, and auto-coder setting

Model modifications for code generation

Implementation Model & Target Code

Perform B2B testing with the implementation model and
the target code during the implementation phase to
evaluate in a target environment as recommended by
ISO 26262. Detect MPU structure, cross compiler
optimization and other target code related issues.

Code Implementation, Testers
MPU, compiler related issues, rounding errors
Code coverage
1SO 26262 compliant testing

MC-Verifier Features (In development, actual features may differ)

MATLAB/Simulink Integration

MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features
such as model, software, target-code B2B testing and report
generation can be executed from the MATLAB/Simulink GUI,
command-line or MATLAB scripts.

Analyze the Error Range

Evaluate the error range over time for model signal lines and code
variable values. Set the allowed error range by percent, then graph and
highlight items that exceed the allowed error range.

& E #)y W 0 T T T T O R MO

(Y Y YV YY VY YV

1‘ J\ ,I‘I‘x “'; _'ll { \.L\
\ Select the time on the graph

Blocks are highlighted according to error range

Code Debugging

Target code B2B tests are executed on GAIO’s MPU simulator
(Instruction Set Simulator). Test and debug the target code without
needing actual hardware. Set breakpoints in the code, verifying changes
in variable values, register values, memory values, etc.

[system simulater

7P REE) ERV) FOISAE) Y-MT) RAEK) ALTH)

ASncaCrn -6 a Lo R R e e e e e s e = |
A= -x startup xas ' main.c - x St
@ &l B|

SAMF 1o = {sb_resull
. = V010 Tuncl(il enable, (nt weds, il inpl]
Couce Fies
"ANETD SecEie 40 /00010050 {.
iar ¥ :
. 9 i1 DI0I0sE 1f 0 ensble)
Feaces Fie: @ ¢ [R0, 2000000000
Ot Fie L i

i
1 oonrooss el e)
. 4 P
PELA 000030828 AT 584X &
FELZ W00 0l
OWSHZE 90 40 00 00 90 00 00 0 oo
owsotsh a0 40 01 00 40 00 m
et Susoash @b & 00 00 40 0 b i
v owse 90 @ 00 00 0w w0
Lo oo I
ome Nt DMISHESE 00 40 0F 00 80 OB 00 40
s gesytduta = Inout s SN 90 90 00 00 4 o b 0
om0 90 00 00 90 00 00
owso a0 40 00 00 10 0 m a1
ST 0 4 00 00 40 0b b i
owswTE 90 @ 00 00 90 0 00 W
OBt @0 %0 00 00 00 0 0 @0

i
@

16 00010090
47 |DoD100a0

18
42 00010034

5000010040 break; = e BT

Error Location Analysis

The output values of signal lines and code variables for the selected
subsystem are recorded during testing. After testing, signal line and
code variable values can be analyzed over time in order to locate errors.
This feature for locating errors even works for models that include
feedbacks.

Sbaystem

© [FWFP.sm domo dosen b By Gubayston

0.01s

Q
]
=

Subsystem

© [S@FP.sm domo desun b By Sikayaton

Canstints

Error Location Found b

Block highlighted colors indicate the degree of error
(From small to large: BLUE -> GREEN -> RED)
Use to locate the cause of errors when they first occur

Code Coverage

Code coverage (statement, Branch, MC/DC) can be measured for
model-to-target-code tests. In this way, detect code structure issues
through code coverage testing and fulfill ISO 26262 code coverage
requirements.

CONNENT 1 2 3 4 [] 7
CONENT
[EEECT ih_a ibb ab_e dhd gbout | funcdée
1 1 " & a1 1 5 o
2 i n 2l 31 1 i [
a 4 1 20 0 1 5 o
4] 0 o 31 [5 0
E] 3 10 £ £ 1 1 a
] t 1n [31 [5 [0
!\:g int funcd(int code
201 int return_valuesFALSE;
202 int {3
203
204
205 |T/F i£(gba > 10)
- [HC/0C /1] gb_a>10
207 [1/F {£(gbb > 20 34 gb_e > 30)
[hezpe st inwoin
- UC/DC £/) EbZc30
i prm—
211 el
212 {
E;J y gboout = =13
214
m ' return_value = FALSE;
17 il
218 1
219 |4/4 mwitch(code)
220 {
EH cage |} -
283 ok
Lis ;

Test Reports

Test reports including B2B test results, tested subsystem/function list
and code coverage results can be output to XML, HTML, CSV, XLS(X)
formats. Easily create test reports needed for functional safety
certification.

Import Test Cases from other MBD Tools

Test case data created from other MDB tools can be easily imported for
B2B testing in CSV, M-file and other general formats.

GAIO TECHNOLOGY CO.LTD.

Sales Division

Tennouzu First Tower 25F

2-2-4 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
E-mail: info@gaio.co.jp WEB: http://www.gaio.com/

