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smx® Special Features  
 
smx is an advanced RTOS kernel. The Advanced 
Features section of the smx datasheet summarizes 
the advanced features of smx. This document 
presents more detailed information for the most 
important of these features and discusses their 
usage. See the smx User’s Guide for more 
technical detail and for examples. 

High Performance 

smx performance features permit using slower, less-
costly processors. They also can avoid the need for a 
separate processor to handle foreground operations. 

Three-Level Structure 

ISRs
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Hardware

LSRs

Tasks
Application

 
 
smx supports a three-level structure for application 
code, as shown above. These levels are: 

• Interrupt Service Routines (ISRs) 
• Link Service Routines (LSRs)  
• Tasks 

LSRs fill the gap between ISRs and tasks. LSRs are 
usually invoked from ISRs, and they run after all 
ISRs have run. LSRs are interruptible to allow more 
ISRs to run. They are ideal for applications with 
heavy interrupt loads due to the following: 

• Deferred interrupt processing. 
• Reduced interrupt latency. 
• Graceful overload handling. 
• Reduced reentrancy problems. 
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Deferred interrupt processing. It is general practice 
to keep ISRs as short as possible in order to minimize 
interrupt latency caused by the ISRs, themselves, and 
to avoid ISR reentrancy problems. With smx, 
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interrupt service code that is less time-critical can be 
deferred to LSRs.  
LSRs are invoked by ISRs when there is work for 
them to do, and they run after all pending ISRs have 
finished. Multiple LSRs can be enqueued in the LSR 
queue. The same LSR can even be enqueued more 
than once. LSRs perform deferred interrupt 
processing, including calling smx services. For more 
discussion, see the Deferred Interrupt Processing 
white paper. 
Interrupt latency determines how frequently 
interrupts can occur without being missed. It is 
defined as the time from when an interrupt occurs 
until its ISR starts running and is the sum of three 
delays: 

interrupt latency = processor latency + kernel 
                             latency + application latency 

Kernel latency consists of the time that the kernel 
disables interrupts. Because ISRs do not make smx 
service calls, all smx services, LSRs, and 95% of the 
smx scheduler run with interrupts enabled. 
Consequently, smx interrupt latency is very small — 
about the same as the processor, itself. 
Graceful overload handling is a feature of LSRs 
that is discussed in a section, below. 
Reentrancy problems are reduced by deferring 
processing from ISRs to LSRs because LSRs cannot 
preempt each other. 
Relaxed task latency. Critical functions that require 
very low-latency can be moved from tasks to LSRs. 
Then the required task latency can be relaxed. This 
permits more task design freedom. 

Scheduler Features 
The scheduler is the most important part of a 
multitasking kernel. It decides whether or not to run a 
new task. To do so, it suspends or stops the current 
task and resumes or starts the new task. 
smx Scheduler: smx has an advanced scheduler 
written in optimized C, using assembly functions for 
operations that C cannot perform. It runs exclusively 
using the System Stack with interrupts enabled about 
95% of the time. SSR_EXIT() and ISR_EXIT() 
decide whether to call the prescheduler, which in turn 
decides whether to call the LSR and task schedulers. 
Bypass paths through the EXITs and prescheduler 
improve performance when the current task is being 

continued or exit is to another part of smx (e.g. an 
SSR or the scheduler interrupted by an ISR). 
The LSR scheduler runs all LSRs in the LSR queue, 
and then returns to the prescheduler. LSRs can call 
SSRs and invoke other LSRs — all with interrupts 
enabled. 
The task scheduler runs only when an operation has 
occurred that requires a task switch. It tests for stack 
overflow, stops or suspends the current task, and then 
starts or resumes the top task in the ready queue. In 
the dispatch process, it handles the difficulties related 
to stack sharing and scanning. (The benefits of these 
are discussed in sections below.) It also handles 
exceptional conditions such as a damaged or empty 
ready queue. 
Prior to actually dispatching the next task, the 
scheduler checks the LSR queue to see if an LSR has 
become ready to run due to an interrupt that occurred 
while the scheduler was running. If so, the scheduler 
does an LSR flyback, which will run the LSR(s) and 
then start the task scheduling process all over, if a 
higher priority task has become ready to run due to an 
LSR running. 
The scheduler also implements task profiling if 
enabled, task switching time measurements if 
enabled, and autostop due to a task running through 
the closing brace of its main function or returning 
from its main function. 
The scheduler assembly functions and the 
prescheduler comprise about 100 lines of assembly 
code, making the scheduler portable to other 
processor architectures, with minimal effort. 
Fast Task Switching encourages dividing an 
application into many tasks, thus allowing the kernel 
to do more of the work of coordinating operations via 
its intertask communication mechanisms. This 
simplifies application development by allowing it to 
be implemented with small, simple tasks that are 
easier to write and debug. 
There are two fundamental types of commercial 
RTOS kernels: task-mode kernels and process-mode 
kernels. 
smx is a task-mode kernel. All software runs in the 
same memory space and in the supervisor or 
protected mode of the processor. Task switching 
requires saving the current task’s non-volatile 
registers in its Register Save Area (RSA), moving to 
the new task’s TCB, restoring the new task's saved 

www.smxrtos.com/articles/techppr/DeferredInterruptProcessing.pdf
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registers from its RSA, then resuming the new task 
from where it left off. All of this is implemented very 
efficiently. 
Process-mode kernels separate the kernel and the 
application into isolated processes. Isolation requires 
a processor with a Memory Management Unit 
(MMU). In addition to the above normal task 
switching operations, switching from a task in one 
process to a task in another process requires purging 
the MMU look-aside buffer, switching to a different 
page table, reloading caches, and possibly other 
operations. These extra steps place a large time 
overhead on task switching. Messaging also 
encounters increased overhead due to the need to 
copy messages from one process’s memory space to 
another’s. Process mode is normally used in 
environments that run independent applications, some 
of which may not be reliable or trustworthy. 
A task-mode kernel, such as smx, is the better choice 
for hard-real-time embedded systems. 
Preemptive Scheduling, as used by smx, is the best 
method for embedded system task switching. As soon 
as a higher priority task is ready to run, it preempts 
the current task and runs. There is no time-slice 
granularity involved, as with some kernels. 
The problem with time-slice scheduling is that a 
ready task must wait until the end of the current time 
slice to be dispatched. Thus, task response time is 
governed by the granularity of the time slice. If the 
granularity is too coarse, task response time is too 
slow. If the granularity is too fine, there is too much 
overhead from interrupting the current task to 
determine if a higher priority task is ready to run. 
Multiple Tasks per Priority Level:  smx allows 
multiple tasks to share a priority level. Within a group 
of equally important tasks, the task that has waited 
longest will run first. This is a more natural 
scheduling method as compared to requiring each 
task to have a different priority. 
Allowing multiple tasks at the same priority level also 
simplifies round-robin scheduling, and priority 
promotion (see mutex discussion) works better if 
tasks can share priority levels. 
Scheduler Locking:  smx allows the current task to 
lock the scheduler, in order to protect itself from 
preemption. Locking is useful for short sections of 
critical code and for accessing global variables 
because its overhead is small. ISRs and LSRs are not 

blocked from running so there is no foreground 
impact. 
Locking is also useful to prevent unnecessary task 
switches. For example: 

smx_TaskLock(); /* lock current task */ 
smx_SemSignal(semA); 
smx_SemTest(semB, tmo);   /* unlock it */ 

Without the lock, a higher priority task waiting at 
semA will immediately preempt this task, when it 
signals semA. When the higher-priority task is done, 
this task will resume only to suspend itself on semB 
— a wasted task switch. With the lock, the higher 
priority task becomes ready, but does not run. This 
task then suspends itself on semB, which 
automatically unlocks this task, and the higher 
priority task runs. 
The smx locking mechanism supports nesting. This is 
important because a function, which does locking, 
may call a sub-function, which also does locking. If 
the sub-function left the current task unlocked, due to 
lack of lock nesting, then the function would be 
unprotected, thereafter. 

Layered Ready Queue 
The layered ready queue1 supports a large number of 
tasks, with minimal overhead. Enqueueing a new task 
in a linear ready queue, as used by most kernels, 
requires searching from the beginning of the ready 
queue until the last enqueued task of equal priority is 
found, after which the new task is enqueued. 
Obviously, if there are a large number of tasks in the 
ready queue, this will take significant time. 
In most kernels, interrupts are disabled for the entire 
enqueueing time, because ISRs can make kernel calls, 
which result in enqueueing new tasks in the ready 
queue. This can greatly increase interrupt latency, 
which is one of the most important things in an 
embedded system. Making matters even worse is that 
the lowest priority tasks take the longest to enqueue. 
Hence, the least important tasks are slowing down 
interrupt response the most. 
When designing smx, we observed that since smx 
tasks are permitted to share priority levels, embedded 
systems usually need no more than about 10 priority 
levels. Therefore, smx has a separate ready queue 
level for each priority level. Each level is headed by a 
                                                      
1 The ready queue is where ready-to-run tasks are 
enqueued. 
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ready queue control block (RQCB). The RQCBs are 
contiguous in memory and in order by priority. 
Enqueueing a task is thus a two-step process:  

(1) index to the correct RQCB, using the priority 
of the task, and  

(2) follow the backward link of the RQCB to the 
end of the queue and link the TCB to it: 

2 2

2

QCB TCB

0

2

1

0

Doubly linked list makes
enqueueing fast.
(Uses backlink from QCB.)

Numbers are priorities.

Index
Enqueue

This two-step process is fast and it takes the same 
amount of time regardless of how many tasks are in 
the ready queue — 10 or 10,000 makes no difference. 
Finding the next task to dispatch is also fast because 
smx maintains a pointer to the TCB of the next task 
to run (which is the first task in the highest occupied 
rq level). 

Fast Heap 
The new smx heap is a high-performance, 
configurable heap, with debug and safety features. It 
has some similarities to GPOS heaps, in that it is a 
bin-type heap. But, it is simpler, and it has an 
implementation appropriate for embedded systems. 
Its architecture is governed by the following 
embedded system objectives: 

(1) Works with very small to large amounts of 
RAM.  

(2) High performance. 
(3) Deterministic behavior. 
(4) Small code size. 
(5) Ruggedness. 
(6) Strong debug support. 

 
Embedded system heaps can vary in size from 
kilobytes to megabytes. Hence, efficiency, 
performance, and adaptability are important. At the 

low end, efficient memory utilization is most 
important; at the high end, performance is most 
important. In general, all embedded systems need 
fast, deterministic block allocations. Code must be as 
small and efficient as possible, especially for low-end 
systems. Requirements 5 & 6 are discussed in 
appropriate sections that follow. 
Most RTOSs have linear heaps, which require 
searching from the first free chunk until a big-enough 
free chunk is found, in order to allocate a block of the 
desired size. When a heap becomes highly 
fragmented this can require searching through 
hundreds of chunks. 
The new smx heap has a two dimensional structure: 

(1) Physical structure 
(2) Logical structure 

The physical structure is the usual linear structure 
with all chunks (inuse and free) linked together, in 
physical order. The logical structure consists of heap 
bins. A heap bin holds one chunk size (small bin) or a 
range of chunk sizes (large bin). The bins are 
configured by a size array and can be reconfigured 
merely by adding, removing, or changing sizes. 
A bin heap normally starts with a small bin array 
(SBA). This might consist, for example, of bins for 
chunk sizes 24, 32, 40, ... bytes up to any desired 
limit. The SBA is accessed simply by converting 
chunk size to the bin index. As long as bins are kept 
full, allocation is nearly as fast as a block pool. This 
is very attractive for object-oriented languages such 
as C++, which are heavy heap users. 
Above the SBA is the upper array of large and small 
bins culminating in the top bin. It takes all sizes 
above its limit (e.g. 2048 bytes and up). There can be 
any number of bins in the upper bin array. Access to 
the correct upper bin is via a binary search algorithm 
— still very fast. Within a large bin the best-fit chunk 
is taken after N tries, where N is a configuration 
option. 
Several services and mechanisms are provided to 
keep bins full — see the smx Heap section in the 
smx datasheet. To the degree that this is achieved, the 
heap is very fast and deterministic. 
 
 
 

www.smxrtos.com/rtos/kernel/smx.pdf
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Timers Directly Launch LSRs 
smx one-shot, cyclic, and pulse timers directly invoke 
LSRs, instead of starting or resuming tasks. Hence, 
timer code runs at a higher priority than any task and 
it cannot be blocked by any task (i.e. priority 
inversion is not possible between a task and an LSR). 
Even task locking does not prevent LSRs from 
running. The net result is reduced timer jitter and 
greater accuracy of timed operations. This is 
important for precise sampling and smooth control.  

No-Copy Block I/O 
Through a process we call block migration, smx 
allows any block to be made into a message, which 
then can be propagated to tasks via exchanges. This 
brings the full exchange messaging capabilities of 
smx to bear on I/O blocks.  
smxBase provides interrupt-safe block pools for use 
from ISRs, so that an ISR can obtain an input block 
from a base pool and fill it with incoming data. When 
full, the ISR invokes an LSR and passes the block 
pointer to it. The LSR makes the block into an smx 
message and sends the message to a message 
exchange, where a task waits to process it. 
The message may be partially processed by the first 
task, then sent up to the next layer of the software 
stack via another exchange, and so forth. When the 
last task is done with the message, it simply releases 
it, and the data block automatically goes back to the 
correct base pool. This entire process requires no 
copying of the message, hence it is efficient and fast. 
The reverse process can be used for block output: A 
message is obtained by a high-level task, partially 
filled, and then passed down to the next software 
level via an exchange. The task waiting at that 
exchange adds more information (e.g. a header) and 
passes the message down to the next level, etc.  
The lowest level of the software stack (which could 
be a task or an LSR) unmakes the message into a bare 
block, loads its block pointer and pool handle into 
ISR global locations, and starts the output process. 
The ISR outputs all of the data, then releases the 
block back to the pool it came from. Like input, this 
entire process requires no copying of the message. 
smx block migration provides considerable flexibility 
in that blocks can come from anywhere. If they are 
either base or smx pool blocks they will automatically 
be released back their correct pools. Whatever thread 

(ISR, LSR, or task) is releasing a block need not 
know where it came from. If the block is not from a 
pool, the pool parameter is NULL, and no action is 
taken to release the block to a pool. 

Small Memory Footprint 
Small memory footprint is important for SoCs, 
because using only on-chip memory is cheaper and 
faster than using additional off-chip memory. This 
also allows using simpler processors, without MMUs, 
thus producing further cost and power savings. In 
addition, the smaller the memory, the smaller the 
chip, and the lower its cost. These savings are 
particularly important in low-cost embedded products 
that are produced in large quantities (e.g. Things).  
SRAM requires about 6 times the chip space of flash 
memory. Hence, minimal RAM usage is more 
important than minimal flash usage, although both are 
important. 

Stack RAM Reduction 
In general, every active task requires its own stack. 
(An active task is one that is running, ready to run, or 
waiting for an event.) For best performance, stacks 
should be in fast RAM. This is especially true if auto 
variables are used extensively in routines called by 
tasks in order to achieve reentrancy. 
Depending upon the amount of function nesting, the 
number of function parameters, and the number of 
auto variables, task stacks can be quite large. Hence, 
systems with large numbers of tasks can require large 
amounts of RAM for their stacks. 
In RAM-constrained designs, this tends to result in 
the unfortunate tradeoff of using fewer tasks than is 
optimum for the application. When this happens, 
many benefits of multitasking, such as ease of coding, 
are lost because operations that could be handled by 
kernel services become internal operations within 
tasks. Application code must be created to perform 
these operations that could otherwise be handled by 
existing smx services. In addition these operations are 
hidden from debug tools, such as smxAware.  

Minimizing Stack RAM 
System Stack (SS) is used for initialization, ISRs, 
LSRs, the scheduler, and the error manager. This 
leaves only the stack requirement of each task, itself, 
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which greatly reduces the amount of RAM required 
per task and makes it easier to fine-tune task stack 
sizes, since the unpredictability of interrupts is 
removed. Of further benefit, SS can normally fit into 
on-chip SRAM, even if task stacks cannot, which 
helps to improve ISR, LSR, and scheduler 
performance. 
LSRs can perform functions that might otherwise be 
performed by small tasks. Examples are functions 
invoked by timers and ISRs. Using LSRs saves task 
stack space because they run in SS. 
One-Shot Tasks offer a unique stack-sharing 
capability for smx. A one-shot task is a task that runs 
once, and then stops. When it stops, it has no 
information to carry over to its next run and thus does 
not need a stack. smx permits one-shot tasks to 
release their stacks for use by other tasks, while they 
wait for events. 
One-shot tasks are created and started without a 
stack. When dispatched, a one-shot task is given a 
temporary stack from the stack pool. When the task 
stops, it releases the stack back to the stack pool. smx 
also supports normal tasks, which have permanent 
stacks that are bound to the tasks when they are 
created. 

 
stack

temporary permanent

stack
tasktask

 
 
While running, there is no operational difference 
between one-shot tasks and normal tasks. Both can be 
preempted and both can be suspended while waiting 
for events. Both retain their stacks, when preempted 
or suspended. However, when stopped, a one-shot 
task releases its stack back to the stack pool, whereas 
a normal task retains its stack.  
For every normal wait service, smx provides a stop 
version — see smx API section in the smx datasheet. 
Thus, stopping vs. suspending a task introduces no 
constraints on what a one-shot task can do vs. a 
normal task. It can, for example, stop at an exchange 
to wait for a message, just like a normal task can 

suspend at the same or different exchange to wait for 
a message. 
When a one-shot task is dispatched after being 
created or stopped, it is given a new stack from the 
stack pool, and it starts from the beginning of its main 
code. There is very little performance penalty for 
starting a task with a new stack versus resuming a 
task that already has a stack. (Getting a stack is 
balanced by not needing to restore registers from it.) 
If no stack is available, the scheduler passes over the 
task until one is available. During the wait, the task 
retains its position in the ready queue. 
Compared to other mechanisms for sharing stack 
space (e.g. OSEK BCC1), the smx approach has three 
advantages: 

(1) Any mixture of one-shot and normal tasks 
can run simultaneously. 

(2) One-shot tasks can wait at semaphores, 
exchanges, etc. when they are stopped. 

(3) One-shot tasks can run in any order. 
If one-shot tasks do not suspend themselves (i.e. they 
can wait only in the stopped state), then the number 
of stacks required in the stack pool is equal to the 
number of different priorities of one-shot tasks. For 
example, if there were 20 one-shot tasks having 3 
different priorities, then only 3 stacks would be 
required in the stack pool. 
Using one-shot tasks: One-shot tasks are good as 
helper tasks that do some simple thing then stop. 
They are also good for tasks that seldom run. Why tie 
up a large block of SRAM for a task that seldom 
runs? Examples are tasks that handle exceptions, 
infrequent operator requests, infrequent downloads, 
etc. One-shot tasks are also good for mutually 
exclusive operations which cannot happen 
simultaneously (e.g. the task that starts an engine 
versus the task that stops the engine), for sequential 
operations, or for state machines. 
As one gets accustomed to using one-shot tasks, the 
applications for them seem to multiply. Since they do 
not require allocation of permanent stack space it is 
nice to do many little things with many little one-shot 
tasks, rather than doing them with a few complicated 
tasks. Coding and debugging is much easier for little 
tasks. 
Performance can be scaled to available RAM simply 
by reducing the number of stacks in the stack pool. 
Then one-shot tasks may need to wait for stacks. If 

www.smxrtos.com/rtos/kernel/smx.pdf
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so, performance will be reduced, but the system will 
continue to run correctly. With a one-shot task one 
gets a full task at a discounted RAM price. 
Deleting tasks: Like most kernels, smx permits tasks 
to be deleted. A stack is allocated from the smx heap 
when a bound task is created and freed to the heap 
when a bound task is deleted. Task creation and 
deletion are relatively fast operations (though not as 
fast as starting and stopping one-shot tasks).  
Deleting unneeded tasks is one way to reduce stack 
RAM usage. The downside is that deleted tasks 
cannot wait for events. Hence, it can be more 
complicated to restart them than to restart one-shot 
tasks. In addition, deleted tasks drop off the radar 
relative to debugger awareness, whereas one-shot 
tasks do not. For these reasons, one-shot tasks are 
likely to be a better solution in restricted memory 
systems. 

Efficient Memory Allocation 
smx provides both a heap and block pools. Heaps are 
popular because of their flexibility and programmer 
preference. The new smx heap is fast and 
deterministic if bins are full. However, block pools 
are still faster and more deterministic. In addition 
heaps can fail due to external fragmentation — i.e. 
too many small free chunks separated by inuse 
chunks. 
Block pools are safer, but they also waste memory, in 
this case due to internal fragmentation — i.e. blocks 
often are larger than necessary, and block pools often 
have more blocks than needed. But this is more 
controllable than heap fragmentation and also block 
pools are simpler. 
Offering both a heap and block pools permits using 
an optimum combination for a given application. 

Sharing Dynamic Control Blocks 
In a kernel, each object (e.g. semaphore, task, 
message, etc.) requires a control block to manage it. 
Control blocks contain information about the object. 
smx control blocks are dynamically allocated from 
control block pools. For example, when a task is 
created, its task control block (TCB) is obtained from 
the TCB pool. If the task is later deleted, its TCB is 
returned to the TCB pool and can be reused. This 
contrasts with most kernels for which all control 

blocks are statically allocated at link time and cannot 
be shared. 
For an smx data block, a block control block (BCB) 
is allocated from the BCB pool and linked to a data 
block allocated from a data block pool. Both are 
returned when the smx block is no longer needed. 
The same is true of smx messages, which use 
message control blocks (MCBs) linked to data blocks. 
In a dynamic situation (e.g. receiving packets over a 
communication link), dynamically allocated control 
blocks can result in significant memory savings and 
flexibility vs. statically allocated control blocks. 

Debug Aids 
Multitasking problems can be difficult to debug. 
Simple, free kernels provide almost no help. This can 
be costly in lost development time and missed 
schedules. Generally speaking, we spend most of our 
time testing and debugging. Hence the debug aids 
provided by an RTOS kernel are very important. 
Bugs are a serious problem whether malware exploits 
them or not. However, the threat of malware 
increases the importance of fixing bugs and reducing 
other weaknesses that might be exploited. It is 
sobering to realize that embedded system 
programmers may have less time to fix bugs than 
malware writers have to exploit them! 

Debugger Support 
Of course a debugger is the first line of attack on 
bugs. We have done a lot of debugging with smx and 
we have made many improvements to make 
debugging an easier and more pleasant experience. 
smx does extensive error checking, which can be a 
strong ally in the war on bugs. When an error is 
detected, smx sends an error messages to the console2 
identifying the error type, such as “Out of TCBs”. 
Many minor problems like this are easily found and 
fixed by keeping an eye on the console or a watch on 
smx_errno. 
smx employs many features to make debugging with 
a debugger easier. Among these are: smx control 
blocks are defined as structs with meaningful short 
names. Clicking on an smx object name in the 

                                                      
2Typically a terminal emulator running on a computer 
connected to a serial output from the board under test. 
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debugger watch window opens the struct display, 
revealing its fields and showing their values.  
Most objects have user-assigned names, which makes 
identification easier — especially when tracing links. 
For most objects, names are stored in the fourth field 
of their control blocks. Fields with fixed values, such 
as cbtype or state, are defined with enums so field 
values are easily understood, for example 
SMX_CB_TASK or SMX_WAIT.  
Link fields are defined as control block type pointers, 
when possible, so that clicking on a link field in one 
control block reveals the fields of the control block to 
which it points. Often it is helpful to trace through a 
queue by repetitively clicking forward links. 
smx uses short names to facilitate viewing fields,  
variables, and values in reasonably narrow columns 
to conserve display space. This allows keeping the 
watch window reasonably narrow, even when tracing 
queues. Source code for smx is limited to 80 columns 
so that the source code window is also fairly narrow. 
This allows displaying at least one or two additional 
windows, such as local variables, registers, 
disassembly, memory, call stack, and notes on the 
center display. 
Generally speaking, the more data seen at once, the 
greater the likelihood of spotting anomalies — i.e. 
things that do not look right. These often lead to 
finding and fixing bugs. The human brain is good at 
spotting anomalies, such as a wolf amongst the sheep. 
The smxAware debugger plug-in is a graphical and 
textual kernel-awareness tool that shows system-level 
views. It is opened from the debugger menu. It allows 
accessing: smx objects, text event log, and graphical 
displays including: 

• Event Timeline showing all tasks, ISRs, and 
LSRs and their interactions,  

• Profile bars for tasks, ISRs, and LSRs  

• Stack and Memory usage bar graphs, and 

• Memory Map Overview, which shows what is 
where in memory. 

 See the smxAware datasheet for details. 

esmx (examples for smx) 
esmx can be linked into the Protosystem by 
uncommenting #define SMX_ESMX in the master 
preinclude file. It has examples that show a wide 

range of usages for smx objects. For example, etask() 
has 7 normal task demos and 6 one-shot task demos. 
Unlike the simplified demos in the manuals, these 
demos are complete, and they compile and run. Thus, 
the all-important details are there. 
Extreme misery in debugatory can be avoided by 
picking a close example, stepping through it to learn 
its secrets, and then modifying it to do what you need. 

Event Logging 
If enabled, events are logged into the event buffer 
(EVB) for later viewing by smxAware, or via the 
debugger. EVB is a cyclic buffer of variable-size 
event records. Records are created by logging macros 
inserted into smx code. The types of events that are 
logged are: 

• Task start, stop, suspend, and resume 
• SSR calls 
• LSR entry, exit, and invoke 
• ISR entry and exit 
• Errors 
• User events 

Logging can be selectively enabled or disabled by 
event type and also by one of eight SSR groups, 
defined by the user. 
Each record is precisely time-stamped. EVB can be 
uploaded and viewed through smxAware as a 
graphical timeline or as an event log. The timeline 
provides a convenient graphical view, which can be 
zoomed in or out. The event log is useful for support 
— it is used to record what was happening in a 
system when an error occurred.  
Recording errors in EVB is helpful because it allows 
seeing them in the context of other system and user 
events, which helps to find their causes. Errors appear 
as red dots on timeline graphs. 
Seven user event log macros are provided to log from 
0 to 6 parameters per event. User event macros can be 
placed, like printf()'s, anywhere in the code. Events 
appear in the smxAware timeline or event log, 
relative to system events. User events appear as white 
tick marks within task/LSR/ISR bars, similar to other 
events. Mousing over them with the Details button on 
shows the parameters logged. 

www.smxrtos.com/rtos/devtools/smxaware.pdf
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Stack Overflow Detection 
Stack overflow is a common problem in multitasking 
systems. It can damage other tasks’ stacks, the heap, 
data buffers, etc. Often the culprit is not the task to 
experience problems. Thus it can be difficult to debug 
stack overflow and it can waste precious debug time. 
The smx scheduler checks the stack pointer and the 
stack high-water mark when suspending or stopping a 
task. If either indicates an overflow, the error 
manager is called, which logs the problem and sends 
an “smx STK OVFL” message to the console.  
Stack padding is useful during development. A 
configuration option allows placing stack pads above 
all stacks of user-selectable size. Stack pads absorb 
stack overflows thus preventing damage, which 
allows the system to continue running.  
smxAware has a stack usage window, which shows 
stack usage per task and which stacks have 
overflowed into their stack pads. This makes spotting 
insufficient stack sizes easy and enlarging them while 
you still have hair left. 

Task Stack Sizing 
Multitasking requires multiple stacks and stacks are 
one of the biggest RAM users in a system, so fine-
tuning stack sizes is important to save memory. smx 
maintains a high-water mark for each task to indicate 
maximum stack usage by the task. 
Stack scanning is the most reliable way to measure 
stack usage — a task need not be stopped at peak 
stack usage in order to see that there is a problem. 
Stack scanning is done from the idle task in order to 
not take time away from important tasks. The stack 
high-water mark is maintained in each task’s control 
block. Stack usage can be viewed graphically in 
smxAware, or it can be seen in the debugger watch 
window by comparing the shwm field to the ssz field 
in a task’s TCB. 
As previously noted, the use of the System Stack for 
everything except tasks makes task stack sizing much 
easier to do and less risky. 

Heap Debugging 
Heap debugging is another challenging endeavor. 
Particularly problematic are block overflows that 
damage heap links, thus causing the system to 
experience exceptions, such as attempting to access 

non-existent memory. Heap leaks, due to tasks 
forgetting to free blocks, are also difficult to find.  
In order to maximize memory efficiency, inuse 
chunks have only a forward link and a backward link 
+ flags, producing a total overhead of 8 bytes.  
Looking at them is not helpful, other than to see 
whether they have been damaged. 
The smx heap provides a debug mode. When the 
debug mode is on, block allocations produce debug 
chunks instead of inuse chunks. A debug chunk 
consists of a heap debug control block (HDCB) 
followed by fences, followed by the allocated data 
block, followed by more fences. (Fences are words 
with a fixed pattern.) The number of fences and the 
fence pattern are configuration options. Fences are 
traps — enough fences will keep the overflow inside 
the chunk, thus preventing damage to the heap, and 
allowing the system to keep running, so you can catch 
the bug causing the overflow.  
Obviously, a debug chunk can be much larger than an 
inuse chunk. This is why selective use is permitted — 
debug mode can be turned on only while suspected 
tasks or functions run. Thus debug chunks can be 
used even in tightly memory-constrained systems. 
An HDCB contains the block owner (task or LSR that 
allocated the block), time of allocation, and size. 
These are helpful to track down forgetful tasks that 
cause memory leaks. 
Sometimes, the only way to find a heap problem is to 
manually scan the heap using the memory window. 
This is a mind-numbing experience, fraught with 
human error. To reduce eye and brain strain, heap fill 
mode can be turned on. In this mode, the top chunk is 
filled with a unique pattern, during heap initialization. 
Thereafter, data blocks are filled with a unique 
pattern, when allocated, and with another unique 
pattern, when freed. This helps a lot to separate data 
from metadata and free from inuse. It is also easy to 
see the top chunk calving and becoming ever smaller. 
Although this may not be helpful, it is interesting to 
watch. 

Precise Profiling 
If profiling is enabled, precise run times are recorded 
for each task, all ISRs combined, and all LSRs 
combined. Overhead is calculated as the remaining 
time per frame. Resolution is one tick timer clock, 
which depends upon hardware and BSP code, but is 
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typically one to several instruction clocks. Hence, 
even infrequent, small tasks will accumulate run time 
counts (RTCs). 
Task profiling is implemented by RTC functions built 
into smx that record the tick timer count when a task 
starts running and the count when it stops running. 
The differential count is then added into the RTC 
field in the task’s TCB. Similar functions accumulate 
RTCs for combined ISRs and combined LSRs. 
The profile frame size can vary from one tick to 
hundreds of seconds. Small frames are typically 
useful during debug, whereas long frames may be 
more useful for systems in the field, in order to 
accumulate continuous operational data without 
overloading storage and communication facilities.  
At the end of a frame, all RTCs are copied into an 
RTC array and cleared. The array has a row per RTC 
and a column per frame. Each column constitutes a 
sample. When full, each new sample overwrites the 
oldest sample. Profile data is displayed via smxAware 
in graphical form, or it can be viewed in a debugger 
watch window. Coarse profile values displayed on the 
console are calculated from RTCs each second. 
Run time counts show where processor bandwidth is 
being used and can help to spot problems such as 
excessive overhead or tasks hogging the processor.  
RTCs can also be used for run-time limiting. For 
example, a system-monitoring task could monitor 
RTC frames and make task priority adjustments to 
achieve more balanced operation. It could even 
suspend overly-active tasks for one or more frames. 
This could be a means to defend against denial-of-
service attacks or to stop tasks that are in infinite 
loops. 

Precise Time Measurements 
smxBase services are available to measure precise 
times between a reference point and one or more end 
points. This is helpful for system optimization. 
Results are typically stored in an array. Resolution is 
the same as for profiling. Hence, very precise 
measurements can be made for function execution 
times, response times, switching times, interrupt 
latencies, etc. The maximum time measurement is 
limited to one tick period. 
Use of time measurement services is good for 
monitoring times in running systems. For example, it 
is used in smx_HeapMalloc() to accumulate best and 

worst allocation times. During debug, smxAware 
provides tools for precise measurements of operations 
over short to long periods. This may be the easiest 
way to get quick time measurements. 
Elapsed time (etime) can be used for longer time 
measurements. Resolution for etime is one tick. One 
tick resolution, which is offered by many RTOS 
kernels, is not adequate for modern processors, some 
of which can execute one million instructions in a 
single tick! 

Safety, Security, and Reliability 
Concern about SS&R issues is growing due to 
deployment of Internet of Things, proliferation of 
embedded systems, and greater exposure to malware 
and other threats, such as high-energy particles. A 
kernel can either be a big help or a big hindrance in 
dealing with these matters. 
Kernel misuse can be accidental (a bug) or intentional 
(malware). Either way, it is important to reduce the 
ways in which it can happen. If the kernel is able to 
detect and recover from misuse, it can help in 
developing safe, secure, and reliable systems. On the 
other hand, if the kernel has many serious 
vulnerabilities, it may be impossible to build a safe, 
secure, and reliable system using it. 
smx already has many protections in place, and more 
are being added. The following sections discuss 
current features and how they can help to develop 
safe, secure, and reliable systems. 

Error Detection and Management  
Error Detection is the starting point and smx 
monitors about 70 error types. These include invalid 
parameters for services, broken queues, heap 
overflow, stack overflow, invalid control blocks, null 
pointer references, and resource exhaustion. These 
are all checked frequently. smx provides three ways 
to deal with detected errors: 
Local Error Management smx services return 
FALSE or NULL, if an error or a timeout has occur-
red. For reliable operation, calls to smx services 
should be implemented as follows: 
 if (smx_Call()) 
  /* do normal action */ 
 else 
         /* use SMX_ERR to fix problem */ 
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SMX_ERR is macro that tests the err field in the 
current task's TCB. If it is 1, a timeout has occurred 
and the most appropriate action might be to try again; 
otherwise, an error has been detected and SMX_ERR 
is the error number; it should be used to determine 
what to do. 
Local error management provides the most precise 
error management because it is done in the context of 
the error. However, too much local error management 
bloats the code and makes it difficult to understand. 
Central Error Management. smx provides a central 
error manager, smx_EM(), to reduce the need for 
local error management. When an error is detected, 
smx_EM() is automatically called. It records the error 
number in smx_errno, increments a 32-bit global 
error counter, and increments an 8-bit counter for the 
error type. If the error occurred in the current task, the 
error number is loaded into its err field. Information 
regarding the error may also be recorded in the error 
buffer (EB) and in the event buffer (EVB), and an 
error message is queued for output to the console. 
These actions may be adequate for most errors in 
most systems. Sadly a project may be out of time to 
do better. 
Error Hook. smx_EMHook() is called from 
smx_EM() to provide a middle ground between 
overly encumbered local code and non-specific 
central code. It allows the user to add specific error 
handling code for certain error types.  
For example a switch can be made on the error type. 
Then code for that error type has access to the current 
task and other variables to effect a recovery or to 
provide a better record of the error, such as using user 
event macros to log more information about it into 
EVB. This code could also send reports back to a 
central location for analysis. 
Safe Error Manager. An error manager must be 
designed to not cause an error, by itself. Such an error 
would occur under rare circumstances, which could 
be extremely hard to duplicate. And such an error 
would be totally unexpected. smx_EM() does the 
following to avoid this: 
It runs under the System Stack so that it cannot cause 
a task stack overflow, while processing another error. 
(One would not normally think to include extra stack 
space for error handling when tuning task stack sizes, 
and the extra RAM requirement per stack would 
probably not be welcome, either.)  

Error message pointers are enqueued for later console 
output by the idle task to avoid taking time from 
critical tasks. 
Interrupts are enabled so that critical interrupts will 
not be ignored due to unrelated error processing. 
Error Buffer (EB) is a cyclic buffer of error records. 
Each error record contains the error type (errno), the 
time of occurrence, and the task or LSR in which it 
occurred. The error buffer size can be adjusted from a 
few records to hundreds of records, as needed. EB 
can be viewed as an array of records in a debugger or 
symbolically in smxAware. 
Stack Overflow. If a task cannot be suspended 
because its Register Save Area (RSA) would be 
overwritten, the task is automatically restarted. If 
damage has or will occur outside of the stack, a 
system exit is invoked. It, in turn, may cause a system 
reboot, as determined by application code. 

Task Timeouts 
Every smx service that causes a task to wait requires 
a timeout to be specified. Timeouts are primarily for 
safety, but can also be used for accurate timing. For 
safety, they ensure that tasks do not wait indefinitely 
for an event that has failed to occur. If no wait is 
desired, NO_WAIT can be specified. If no timeout is 
desired INF can be specified. However, requiring 
timeouts on all task waits can aid debugging and 
increase reliability. 
Each task has a timeout register that records the time 
by which it should be resumed or restarted. The 
soonest timeout is compared to etime by the 
smx_TimeoutLSR(). If less than or equal to etime, the 
corresponding task is resumed or restarted. The 
timeout LSR can be invoked every tick, if timeouts 
are being used for accurate timing, or after many ticks 
if timeouts are only being used for safety. Either way, 
the timeout mechanism has been designed to be 
efficient and add very little overhead. 

Graceful Overload Handling by LSRs 
Peak interrupt loads are difficult, if not impossible, to 
predict and they are likely to occur at the worst 
possible times. In such situations, LSRs provide a 
safety mechanism. This is because an LSR can be 
invoked many times before running and it can be 
interrupted and invoked more times while running. 
Each invocation can be passed a unique parameter 
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such as a timestamp, a reading, or a pointer. When 
the peak load has passed, LSRs run in the order 
invoked, thus preserving the order of events. 
This behavior achieves graceful degradation under 
stressful situations. The system slows but does not 
break. Deadlines may be missed, but order is not lost. 
In this circumstance, a control system may become 
sluggish but continue operating. The resulting 
dampening might be beneficial to reduce physical 
stress on machinery or to give an operator a chance to 
shut the system down. In a data acquisition system, 
data will not be lost. 

The Unstoppable LSR 
Unlike tasks, which can be preempted by higher 
priority tasks or blocked by lower priority tasks, 
LSRs are not subject to delay by any task. They are 
immune to priority inversion because they cannot 
wait on events. They are simple creatures, which, 
except for interruption by ISRs, are undeterred in 
their jobs. The unstoppable LSR may be exactly what 
is needed for safety-critical and time-critical 
functions. For more information on LSRs, see the 
Link Service Routines white paper. 

Safe Messaging 
Most kernels offer rudimentary messaging in which 
pointers to messages or small messages are passed via 
what are called message queues. smx pipes can be 
used to do the same thing, so this kind of messaging 
is supported by smx. However, it has many problems 
with regard to reliability and efficiency: 

• The receiving task cannot verify that it has 
received a valid pointer to the start of a 
message. The pointer could point anywhere, 
which could result in processing wrong data or 
writing to a wrong memory area. 

• Message size is not specified. Some other 
method must be used to tell the receiving task 
the size of the message it has received. 

• No message priority exists to permit more 
important messages to be processed first. 

• No indication is given of where to return a used 
message when it is no longer needed. 

• An owner is not specified, so there is no 
automatic means to avoid memory leaks when 
owner tasks are deleted. 

• A reply address is not specified for servers to 
know where to send replies to clients. 

• Passing messages directly through pipes 
requires copying them in and copying them out. 

Application code can compensate for these 
deficiencies, but doing so requires new code to be 
written and debugged. It also reduces independence 
between tasks because receiving tasks must know 
more about the messages they are receiving. 
When messages and their parameters get separated, 
the potential for errors increases. An smx message 
consists of a message block, holding the actual 
message, which is linked to a message control block 
(MCB), holding the message parameters. This is 
consistent with good programming practice. 
A message’s handle is a pointer to its MCB. A correct 
handle is verifiable because it must be in the range of 
the MCB pool and it must point to a structure with 
the MCB type in its cbtype field. Hence if a message 
handle is damaged, it is not likely to be accepted and 
used. 
MCBs increase the independence between tasks and 
also their tolerance to change. For example, an smx 
receiving task need not know the message size. It 
simply loads the MCB size field into its local counter. 
When the counter reaches 0 the message is empty and 
can be released back to its pool. Thus, messages can 
vary in size, without changing the code. 
Using bundled parameters also helps to avoid 
miscommunication between task authors and is more 
adaptable to change. Some parameters, such as the 
owner, are used by smx to increase reliability. For 
example a task cannot send or release a message that 
it does not own. This avoids the problem of a task 
accidentally releasing a message that it sent to 
another task. 
Embedded within the MCB is the message block 
pointer. Neither the sending task nor the receiving 
task has any reason to alter this pointer, which is 
loaded by smx3. Both work with their own block 
pointers. Hence, it is unlikely that a receiving task 
will process wrong data due to receiving a bad 
message block pointer. Furthermore, return of the 
message block to its pool is governed by the pool 
handle in the MCB, not by a message pointer, so this 
is safer, too. 

                                                      
3 In this kind of discussion, it is assumed that smx code is 
more reliable than new application code because smx code 
has been proven by use in many projects. 

www.smxrtos.com/articles/lsr_art/LinkServiceRoutines.pdf
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Message Exchanges 
smx messages are sent to and received from message 
exchanges. An exchange is an smx object that 
enqueues either messages or tasks, whichever is 
waiting for the other. The use of exchanges has 
important advantages over direct task-to-task 
messaging, used in some kernels: 

• Anonymous receivers. The receiving task’s 
identity is not hard-coded into the sending task’s 
code. The sender simply sends its messages to a 
known exchange. Thus, it is easy to swap 
receiving tasks without altering sending task's 
code. This can be useful for handling different 
product versions, different installation 
configurations, going from startup mode to 
operating mode, or for other reasons. 

• No limit on the number of waiting messages at 
an exchange. 

• Work queues. A message queue at an exchange 
is a work queue for a server task that is 
receiving messages from that exchange. These 
messages could be coming from many client 
tasks. 

• Token messages. A message can be used as a 
token to control access to a resource and, at the 
same time provide information to access the 
resource (e.g. its port number). 

• Broadcasting, multicasting, and distributed 
message assembly are supported. 

Message Priorities 
smx messages have priorities. Exchanges permit 
servicing high-priority messages ahead of low-
priority messages. This allows more urgent work to 
be completed ahead of less urgent work.  
smx goes a step beyond this by also providing 
priority pass exchanges. A priority pass exchange 
changes the priority of the receiving task to that of the 
received message. This allows a client task to pass a 
priority to a server task via the messages that it sends 
and thus control the priorities at which they are 
processed. For example, a 911 exchange could give 
priority to fire over lost dog. 
This is especially useful for resource server tasks. 
Adjusting resource server task priorities permits them 
to operate as extensions of their client tasks. This is 
preferable to client tasks directly accessing resources, 
because then delays and priority inversions can occur. 

In this approach, the main task goes on with its work, 
knowing that the server task will access the resource 
at a later time. When done with its work, the main 
task might wait at another exchange or semaphore for 
a reply from the server task, which tells it if the 
resource operation was completed properly. 

Safe Block Pools 
Unlike the bare block pools provided by smxBase, 
smx provides safe block pools. smxBase pools are 
useful for ISRs and drivers, but they lack important 
safety features. This is ok in low-level, non-
multitasking code which generally is simple and 
requires high performance, but it is not good in tasks. 
An smx block consists of a data block linked to a 
block control block (BCB). smx blocks are 
manipulated via their handles, which are pointers to 
their BCBs. smx blocks have the following 
advantages over bare blocks: 

• Block pool services are task-safe. 
• Blocks are automatically freed to their correct 

pools. 
• A block is automatically freed if its owner task 

is deleted. 
• Pool information can be obtained via a block’s 

handle. 
• smx block pools are more easily created and 

deleted than base block pools.  
For example, to release a block, it is necessary only to 
know its handle — smx knows its pool and other 
particulars about it (e.g. its size). This prevents 
releasing a block to the wrong pool, which can be 
nasty. 
As with smx messages, a bare block can be made into 
an smx block and an smx block can be unmade into a 
bare block. Hence, for those who prefer message 
queues to exchanges, bare blocks can be made into 
smx blocks and the smx block handles can be passed 
via a pipe. This improves the safety of queue 
messaging. 

Reliable Heap 
Self healing. Heaps are fragile structures due to their 
high concentrations of pointers that are embedded in 
the data. These pointers present a large target for 
block overflows, wild pointers, and energetic 
particles that cause bit flips. Since embedded systems 
are often deployed in remote places and are expected 
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to run for extended periods, some amount of self-
healing is desirable 
Hence, the new smx heap incorporates a scanning 
function that is called from idle. This function scans 
only a few nodes forward per pass so other tasks can 
run. It reports errors found and fixes them if it can. A 
companion function can be called to scan backward 
through the heap in order to fix broken forward links. 
Heap self healing is a work in progress. 
Heap recovery. Another common problem in heaps, 
especially if memory is limited, is not being able to 
allocate a large block, after running for a long time. 
smx_HeapRecover() is provided to search for 
adjacent free chunks that can be merged to form a 
big-enough free chunk and thus recover. 

Dynamically Allocated Regions 
smx is shipped with two DARs: 
SDAR is used for smx objects, such as control 
blocks. It is typically only a few kilobytes in size, and 
can usually be put into on-chip SRAM to improve 
performance.  
ADAR is used for the heap, stack pool, user-defined 
block pools, and other dynamic objects. It normally is 
large and is located in external SDRAM, if present. 
Isolating smx objects from application objects 
improves reliability and helps debugging by reducing 
damage to smx objects due to application code bugs. 
This is a pernicious problem that cuts the ground out 
from under one, because one assumes that the kernel 
is running properly. Wrong assumptions are the 
hardest problems to fix. 

Avoiding Unbounded Priority Inversion   
This occurs when a higher priority task is waiting for 
an object owned by a lower priority task and the 
lower priority task is preempted by one or more mid-
priority tasks. The mid-priority task(s) may run for 
any length of time, thus causing unbounded priority 
inversion for the high priority task. This can cause 
high-priority tasks to miss deadlines causing system 
failures. 
The traditional solution to this problem is for tasks to 
wait on mutexes, which control access to the shared 
resources. Most RTOSs, including smx, offer priority 
inheritance to prevent unbounded inversions. With 
this, when a high-priority task waits at a mutex, the 

current owner's priority is boosted to the same 
priority. This prevents mid-priority tasks from 
running.  
smx mutexes also implement priority propagation, 
which means that if the mutex owner is waiting on 
another mutex, the owner of that mutex is also 
promoted. Priority promotion propagates to all 
mutexes linked together, in this way. Hence the 
owner of the final mutex, and all owners in between, 
will be promoted to the high priority. Many kernels 
do not offer this. 
smx mutexes also implement staggered priority 
demotion. This means that when a task releases a 
mutex, its priority is demoted to the highest priority 
of any task waiting for its other owned mutexes. 
When the last mutex is released, the task reverts back 
to its normal priority. 
These features ensure that smx mutexes work reliably 
in complex multi-mutex situations. 

Deadlock Prevention 
smx mutexes also offer ceiling protocol, which is a 
simpler way to avoid unbounded priority inversion. 
With it, when a task obtains a mutex, its priority is 
immediately raised to the ceiling priority of the 
mutex. The ceiling priority of a mutex is set to the 
priority of its highest-priority potential owner. Thus 
only tasks of higher priority can run and these tasks 
do not use the mutex.  
Among the group of tasks using a mutex, if other 
mutexes are also used, then the highest priority of any 
user of any mutex in the group of tasks becomes the 
ceiling priority of all mutexes in the group. Then, if 
any user gets one mutex in the group, no other user 
can run. This makes mutex deadlocks impossible, 
because there can be only one owner, at a time, of 
any mutex in the group. Hence, ceiling protocol 
provides a simple solution for two vexing problems 
of mutex usage. 
One downside of ceiling protocol is that it is not 
automatic. Hence, if a higher-priority user is added or 
if the priority of a current user is raised above the 
ceiling, the ceiling will fail to protect against 
unbounded priority inversion for that user. To guard 
against this, priority inheritance may be enabled 
along with ceiling protocol. Then users above the 
ceiling will be protected. In fact, the ceiling may be 
set at a mid-level, if so desired. This could be used to 
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prevent deadlocks among lower-priority users that 
share a group of mutexes while not preventing 
higher-priority users that use one mutex in the group 
from running. 

Other Special Features 
Power Management 
The smx_PowerDown(sleep_mode) service provides 
a power-down framework, at the RTOS level. It is 
called from the idle task, when there is no useful 
work to do. It in turn calls the 
sb_PowerDown(sleep_mode) function, which does 
the actual power down process and time recording. 
This is hardware and application dependent and thus 
must be user-implemented. 
When power is restored, control returns to the sb 
function, which must determine time lost, initialize 
the tick timer counter, and return ticks lost to 
smx_SysPowerDown(), which then performs tick 
recovery. This process handles events which timed 
out during the power-off period. It does this in an 
efficient manner that preserves the proper order of 
timed events. Execution time for tick recovery is 
dependent upon the number of events that timed-out, 
not upon the number of ticks lost. 
Operation is largely transparent to the application, if 
sb_PowerDown() is able to accurately determine the 
time lost. 

Easy to Use API  
The smx API has a high degree of symmetry and 
orthogonality. By symmetry we mean that what can 
be done can be undone. For example, smx offers a 
delete function for nearly every create function, a 
start function for every stop function, and a resume 
function for every suspend function.  
By orthogonality, we mean that kernel services 
operating upon tasks do not depend upon the task’s 
state. For example, deleting an smx task has the same 
result, regardless of its state. This sounds easy, but 
consider if the task is in the run state, then it is 

actually deleting itself, which is not easy to do. 
However task self-deletion is actually useful, 
underlining the importance of orthogonality. 
Limiting the number of parameters per function is 
also important for ease of use. Nearly all smx 
functions have three or fewer parameters. Functions 
with many parameters can be difficult to use correctly 
— there being problems remembering what each 
does, their order, etc. In addition, some combinations 
may not be legal and others may be untested. 
As much as possible, smx avoids restrictions on the 
use of its services. Restrictions are easily forgotten, 
leading to problems. For example, most kernels go 
into an undefined state if a task tries to delete itself or 
if the idle task is accidentally deleted. We try to avoid 
Achilles heels, like these, because they can happen 
during normal operation and usually have bad 
consequences. 
See the smx API section of the smx datasheet for 
details. 

C++ Support 
smx maintains a this pointer in the TCB of each task.   
When a task switch occurs, the new task's this pointer 
is loaded into the global this pointer.  
Another C++ requirement stems from global objects. 
A C++ compiler generates initializers for global 
objects. Initializers run from the boot code before 
main() is called. In order to support initializers, all 
smx objects are auto-created and initialized as 
needed. For example, when the first task is created 
(possibly by an initializer), the TCB pool and stack 
pool are automatically created, first. Since the stack 
pool comes from ADAR, it is initialized before the 
stack pool. 
smx++ is an optional product that goes a step further 
by providing smx base objects from which C++ 
application objects can be derived or which can be 
used as member objects in them. See the smx++ 
datasheet for more information. 
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