
RTOS Innovators

Sales: (800) 366-2491 Email: sales@smxrtos.com Web: www.smxrtos.com Voice: (714) 437-7333 Fax: (714) 432-0490

 smx®
Superior Multitasking Executive

smx is an advanced RTOS kernel, which offers
unique features to speed application development
and to make debugging easier. It packs rich
functionality into a relatively small size and it
offers high performance and safety.
smx has been commercially available for over 25
years and has been used in hundreds of applications.
During that time, it has evolved into a reliable, robust,
and capable kernel, and it continues to evolve to
match the rising expectations for embedded software.
The v4.3 release is the latest step in this evolution.

New v4.3 Features

New high-performance heap. It is a bin type heap,
which overcomes the poor performance and
indeterminacy of normal RTOS heaps. It uses
algorithms similar to GPOS heaps, but tailored to the
needs of embedded systems. Allocation performance
approaches that of block pools.
Easy heap configuration via a single constants array.
Heap consists of a small bins array that permits
access by size, an upper bins array consisting of large
and small bins, and a top bin for all larger chunks.
The heap can easily be tuned to a specific application,
such as one using object-oriented programming.
smx_HeapPeek(), smx_HeapSet(),
smx_HeapBinPeek(), smxHeapBinSeed(), and
smx_HeapChunkPeek() permit sophisticated heap
monitoring and control.
Debug chunks help to find heap problems. They
provide time and owner information and fences
around data blocks. They can be freely mixed with
inuse chunks, which have less overhead.
Self-healing heap is provided by automatic heap scan
and heap fix functions, which run continuously
during idle time.

Contents

New v4.3 Features... 1
smx API ... 2

Task Management..2
smxBase Memory Management2
smx Memory Management ..3
Heap...3
Messaging ..3
Pipes...4
Semaphores..5
Mutexes..6
Event Queues ...6
Event Groups ...7
Timers ..7
ISR and LSR Control...8
System ...8
Handle Table..8
Other smxBase Services ..9

Ease of Use .. 9
Processor Support ..9
Tool Support ..9
smxAware ..9
Protosystem..9
Evaluation Kits ..10
Accurate Manuals ..10

Advanced Features ... 10
Performance...10
Efficient Memory Usage..10
Safety, Security, & Reliability11
Debug Aids ..11
Ease of Use ..12

Additional References 12

smx_HeapExtend() permits extending the heap, while
running, to addition space which can adjacent or not.
smx_TimerDup(), smx_TimerPeek(),
smx_TimerReset(), and smx_TimerStartAbs() added
to allow more flexibility in timer usage.
Pulse timer allows easily generating pulses for pulse
width modulation (PWM), pulse period modulation

 2

(PPM), and frequency modulation (FM), using the
new smx_TimerSetPulse().
smx_SysPowerDown(mode) provides structure at the
RTOS level to put the system into a specified power
saving mode, and then performs tick recovery when
power is restored. The latter is done in an efficient
manner, which preserves correct timeout relationships
between LSRs and tasks.
Error management improvement to make local error
handling easier.
Cortex-M4 FPU support has been added for
automatic state saving, to improve task switching
time for tasks using the FPU.

smx API

The smx API provides simple services with few
parameters that are easy to use. It minimizes
restrictions on services, which helps to minimize
usage errors. All functions for an smx object sort
together, giving a clear view of what operations are
possible for the object. The following sections
summarize the smx API per object type.

Task Management
smx_TaskBump(task, pri)
smx_TaskCreate(fun, pri, stack_size, flags, name)
smx_TaskDelete(*task)
smx_TaskHook(task, entry, exit)
smx_TaskLocate(task)
smx_TaskLock()
smx_TaskLockClear()
smx_TaskPeek(task, par)
smx_TaskResume(task)
smx_TaskSetStackCheck(task, ON/OFF)
smx_TaskSleep(time)
smx_TaskSleepStop(time)
smx_TaskStart(task)
smx_TaskStartNew(task, par, pri, fun)
smx_TaskStartPar(task, par)
smx_TaskStop(task, tmo)
smx_TaskSuspend(task, tmo)
smx_TaskUnhook(task)
smx_TaskUnlock()
smx_TaskUnlockQuick()

Tasks may be created with or without permanent
stacks. If stack_size is > 0, a stack is allocated from
the heap. If stack_size == 0 a stack is allocated from

the stack pool when the task is dispatched. The
former are called bound tasks; the latter are called
unbound or one-shot tasks. One-shot tasks share
stacks from a stack pool; this reduces RAM needed
for task stacks. Stop functions provided by smx allow
one-shot tasks to give up their stacks while waiting
for events. When the event occurs the task starts over
and gets a new stack.
Once created, a task needs to be started in order to
run the first time. After that, it can be suspended or
stopped, then resumed or restarted. A task can be
restarted as is or restarted with a new parameter and
even new code and priority. A task can be bumped to
the end of its current priority level or to the end of a
new priority level. Hooking exit and entry routines
into the scheduler allows extended task context to be
saved and restored transparently when a task is
suspended and resumed. This is useful for FPU and
coprocessor registers.
Tasks may be locked against preemption and then
unlocked, which is useful for short sections of non-
reentrant code and for reducing unnecessary task
switches. Tasks can sleep for long periods or be
suspended for times accurate to a tick. Additional
utility functions permit locating where a task is
waiting, peeking at its parameters, and controlling the
checking of its stack.

smxBase Memory Management
sb_DARInit(dar, pi, sz, fill, fillval)
sb_DARAlloc(dar, sz, align)
sb_DARFreeLast(dar)

sb_BlockPoolCreate(p, pool, num, size, name)
sb_BlockPoolCreateDAR(dar, pool, num, size, align,

name)
sb_BlockPoolDelete(pool)
sb_BlockPoolPeek(pool, par)

sb_BlockGet(pool, clrsz)
sb_BlockRel(pool, bp, clrsz)

smxBase provides memory management services to
non-task software and to smx, itself.
Dynamic memory can be divided into regions, called
dynamic allocation regions (DARs). This has been
done primarily to separate smx dynamic variables in
SDAR from application dynamic variables in ADAR.
DARs are managed by smxBase. The DAR
initialization function allows creating a new DAR.

 3

The dar parameter is the handle of a statically-
declared DAR control block, pi points to the starting
address of the DAR block, and sz is its size. If fill is
true, fillval will be written throughout the DAR.
Blocks are permanently allocated from DARs with
specified sizes and alignments. These blocks are
normally quite large and used for block pools, stack
pool, heap, etc. The last allocated DAR block may be
freed in the event that creating the object using it
must be aborted.
Base block pool functions are implemented in
smxBase (shown with sb_ prefixes). Base pools
contain bare blocks for use by software such as ISRs
and drivers. The sb_BlockPoolCreate() function
creates a pool of num blocks of size bytes starting at
p, which can point anywhere in RAM.
sb_BlockPoolCreateDAR() creates a pool in the
specified DAR with the specified alignment.
A pool can be deleted, but it is up to the user to reuse
the memory left behind. A peek function returns pool
information. Interrupt-safe block get and release
services, with optional clearing are provided. These
allow getting and releasing blocks from ISRs, drivers,
etc.

smx Memory Management
smx_BlockPoolCreate(p, num, size, name)
smx_BlockPoolCreateDAR(dar, num, size, align, name)
smx_BlockPoolDelete(*pool)
smx_BlockPoolPeek(pool, par)

smx_BlockGet(pool, *bpp, clrsz)
smx_BlockMake(pool, bp)
smx_BlockPeek(blk, par)
smx_BlockRel(blk, clrsz)
smx_BlockRelAll(task)
smx_BlockUnmake(*pool, blk)

smx provides memory management functions to tasks
that are task-safe (i.e. allow preemption).
Unlike base block pools, smx block pools are task-
safe, have a more automatic API, and provide better
protection from programming mistakes. Each block is
linked to a Block Control Block (BCB), which
contains a pointer to the start of the data block, the
block’s current owner, and the pool it came from.
Like base block pools, smx block pools may be
created anywhere in memory or in a DAR. They also
can be deleted, but it is up to the user to reuse the

memory left behind. Services are provided to get and
release blocks, with optional clearing. An smx block
can be made from any bare block (e.g. a base block,
heap block, or a static block) and can be unmade into
a bare block. Blocks owned by a task are
automatically released if it is deleted, thus reducing
memory leaks. Peek services allow looking at block
and block pool parameters.

Heap
smx_HeapBinPeek(binno, par)
smx_HeapBinSeed(num, bsz)
smx_HeapCalloc(num, size)
smx_HeapChunkPeek(cp, par)
smx_HeapExtend(xsz, xp)
smx_HeapFix(fp, num)
smx_HeapFree(bp)
smx_HeapGetCP(bp)
smx_HeapInit(sz, hp)
smx_HeapMalloc(sz)
smx_HeapPeek(par)
smx_HeapRealloc(bp, bsz)
smx_HeapRecover(sz, num)
smx_HeapScan(tp, num)
smx_HeapSet(par, val)

Heaps are normally not recommended for embedded
systems due to poor, non-deterministic performance.
However, the new smx heap is different. If properly
managed, it can achieve allocation times that are
deterministic and fast.
The smx heap provides the normal heap functions,
calloc(), free(), malloc(), and realloc(). Macros and
functions are provided to map these to the above,
equivalent smx services. The smx heap services are
task safe and provide numerous other advantages (see
discussion in the New v4.3 Features, above).

Messaging
smx_MsgBump(msg, pri)
smx_MsgGet(pool, *bpp, clrsz)
smx_MsgMake(pool, bp)
smx_MsgPeek(msg, par)
smx_MsgReceive(xchg, *bpp, tmo)
smx_MsgReceiveStop(xchg, *bpp, tmo)
smx_MsgRel(msg, clrsz)
smx_MsgRelAll(task)
smx_MsgSend(msg, xchg)
smx_MsgSendPR(msg, xchg, pri, reply)
smx_MsgUnmake(pool, msg)

 4

smx_MsgXchgClear(xchg)
smx_MsgXchgCreate(mode, name)
smx_MsgXchgDelete(*xchg)
smx_MsgXchgPeek(xchg, par)

smx messaging is exchange-based rather than pipe-
based (aka message queue based) as with other
RTOSs, although smx also provides complete pipe
support (see the Pipes section).
Exchange messaging permits more sophisticated and
reliable operation than passing bare block pointers via
pipes. An smx message consists of a message control
block (MCB) linked to a data block, which contains
the actual message. The MCB contains the message
block pointer, type, priority, owner, reply index, and
return pool. Bundling this information with each
message permits more automatic and reliable
message handling. For example, when a task is
deleted, all messages it owns are automatically
returned to their pools. This reduces memory leaks.
MsgGet() gets a data block from the specified block
pool and links it to an MCB from the MCB pool. It
also loads a pointer to the data block into bpp, does
an optional clear of clrsz bytes, and returns the
message handle, msg. When no longer needed,
MsgRel() releases a message back to its block and
MCB pools.
MsgMake() makes a message from any bare block
pointed to by bp; its pool, if any, is stored in the
MCB. This service, following sb_BlockGet(), is the
basis for high-speed, no-copy data input. When the
last task is done with the message, MsgUnmake()
reverses the process and releases the data block to its
correct pool.
Reversing the process is the basis for high-speed, no-
copy output. In this case, a message is obtained with
smx_MsgGet(), converted to a bare block by
smx_MsgUnmake(), then released to its pool by
sb_BlockRel().
smx messages are sent to and received from
exchanges. The use of exchanges has important
advantages over direct task-to-task messaging, such
as anonymous receivers — i.e. the receiver identity
need not be hard coded into the sender. This increases
system flexibility and task independence.
An exchange is an smx object, which enqueues either
messages or tasks, whichever is waiting for the other.
XchgCreate() allows creating one of three exchange
modes: normal, priority-pass, or broadcast. The first

two have priority queues; the third has FIFO queues.
An exchange can be deleted, when no longer needed.
A priority-pass exchange changes the priority of the
receiving task to that of the message it has just
received. Thus a client task can pass its priority via a
message to a server task. Server tasks (e.g. a print
server) are a good way to avoid resource conflicts and
to free high-priority tasks for more important work.
A broadcast exchange permits broadcasting messages
to many tasks simultaneously. Each task receives a
proxy message; the sender retains the original
message. Multicasting is also supported.
Utility services are provided to bump a message’s
priority, peek at its parameters, release all messages
owned by a task, and clear an exchange of messages
or tasks. Also peek is provided for exchanges.

Pipes
smx_PipeClear(pipe)
smx_PipeCreate(pbuf, width, length, name)
smx_PipeDelete(*pipe)
smx_PipeGet8(pipe, pdst)
smx_PipeGet8M(pipe, pdst, lim)
smx_PipeGet(pipe, pdst)
smx_PipeGetWait(pipe, pdst, tmo)
smx_PipeGetWaitStop(pipe, pdst, tmo)
smx_PipePut8(pipe, byte)
smx_PipePut8M(pipe, psrc, lim)
smx_PipePut(pipe, psrc)
smx_PipePutWait(pipe, psrc, tmo)
smx_PipePutWaitStop(pipe, psrc, tmo)
smx_PipeResume(pipe)
smx_PipeStatus(pipe, *ppss)

smx pipe services consist of a mixture of SSRs for
use from tasks and functions for use from ISRs. Both
can be used from LSRs. Pipes handle serial byte and
packet streams for task-to-task communication and
I/O (ISR to LSR or task). Packets may be from 1 to
127 bytes. Pipes are viewed as having widths
corresponding to packet sizes. Put functions put bytes
or packets into pipes, and get functions get them out.
For puts, psrc points to the source of the next byte or
packet. For gets, pdst point to the next destination for
a byte or packet.
The PipeCreate() function accepts a pointer to a pipe
buffer and creates a pipe of the specified width and
length. The pipe buffer can be anywhere in RAM.
Pipes can be deleted, when no longer needed.

 5

For inter-task communication, the PipePutWait()
and PipeGetWait() services are SSRs intended for use
from tasks. They provide synchronization between
tasks for serial transfers of packets. If a pipe is full,
the putting task will wait until the getting task gets a
packet. Conversely, if the pipe is empty, the getting
task will wait until the putting task puts a packet.
LSRs can also use these services, but cannot wait.
Stop versions are provided for one-shot tasks.
For I/O, PipePut8() transfers a byte to a pipe;
PipeGet8() gets a byte from a pipe and puts it at pdst.
The Put8M() and Get8M() versions transfer multiple
bytes, up to the specified limit, lim. The PipePut()
and PipeGet() versions transfer packets. All of these
functions are intended for use from ISRs and can
safely interrupt complementary pipe SSRs being used
from tasks or LSRs.
Since the I/O functions are not SSRs, they cannot
resume a task waiting at the other end of a pipe. After
a number of bytes or packets have been transferred to
or from a pipe, an ISR should invoke an LSR to call
PipeResume(). This will resume the first task waiting
at the other end of the pipe.
Pipe utility functions are provided to clear pipes and
to get pipe status.
Note that smx pipes normally operate between a task
at one end and a task, LSR, or ISR at the other end.
However, smx does allow multiple tasks to wait on
the same pipe, in priority order, either to put or to get
bytes or packets. This permits pipes to be used as
message queues.

Semaphores
smx_SemClear(sem)
smx_SemCreate(mode, lim, name)
smx_SemDelete(*sem)
smx_SemPeek(sem, par)
smx_SemSignal(sem)
smx_SemTest(sem, tmo)
smx_SemTestStop(sem, tmo)

smx provides 6 types of semaphores:

• Binary Resource (lim = 1) controls access to a
single resource.

• Multiple Resource (lim = N) controls access to
N resources (e.g. blocks in a block pool).

• Binary Event (lim = 1) records that one or
more events have occurred.

• Multiple Event (lim = 0) counts all events; the
classical counting semaphore.

• Threshold (lim = T) fires every T events.
• Gate (lim = 1) resumes or restarts all waiting

tasks on one event.

A semaphore is created with the mode and lim
determining its type. It can be deleted when no longer
needed. SemTest() is used to test a semaphore.
SemTestStop() is provided for one-shot tasks.
SemSignal() is used to signal a semaphore, when a
resource has been released or an event has occurred.
Tasks wait at a semaphore in priority order, except
for the gate semaphore.
The classical use of a resource semaphore is to
control access to N resources. The internal count is
started at N and decremented each time a task tests
the semaphore. The first N tests pass, but subsequent
tests suspend (or stop) the testing task on the
semaphore until it is signaled by another task that has
released its resource. Hence, only N tasks can use the
resources, at once.
A binary event semaphore is used in producer /
consumer transactions. It can have only two states: 0
and 1. A signal changes it to 1; additional signals
have no effect upon it. A producer may signal the
semaphore many number of times. When the
consumer tests the semaphore, it will pass and clear
its 1 count to 0. The consumer accepts all items the
producer has produced without retesting the
semaphore. When done the consumer might do other
work before testing the semaphore again.
A multiple event semaphore records all events that
have occurred. No events are lost, even when no task
is waiting (unlike an event queue). This is useful for
counting quantities such as revolutions of a wheel or
items on a conveyer belt.
A threshold semaphore enables counting multiple
events per action. Each signal increments an internal
counter. When the count reaches the threshold, the
first waiting task is resumed and the count is reduced
by the threshold. This can be used, for example, to
determine that all slave tasks are done.
A gate semaphore passes all waiting tasks on one
signal. It is useful to restart all slave tasks at once or
to resume run-time limited tasks that have reached
their run-time limits.

 6

Clearing a semaphore releases all waiting tasks with
FALSE return values and restores the semaphore to
its initial state. SemPeek() allows obtaining
information about a semaphore.

Mutexes
smx_MutexClear(mtx)
smx_MutexCreate(pi, ceiling, name)
smx_MutexDelete(*mtx)
smx_MutexFree(mtx)
smx_MutexGet(mtx, tmo)
smx_MutexGetStop(mtx, tmo)
smx_MutexRel(mtx)

Mutexes are safer for resource protection than binary
resource semaphores for the following reasons:

• Nested testing by the same owner is permitted,
without causing the owner to stall.

• A mutex can be released only by its owner.
Attempted releases by non owners have no
effect.

• Priority promotion of the owner, when a
higher-priority task waits, avoids unbounded
priority inversion.

A mutex with priority inheritance (pi) promotion is
created by specifying pi = 1. A mutex with ceiling
priority promotion is created by specifying a ceiling >
0. Mutexes can be created with both.
If a mutex is free, MutexGet() passes; otherwise the
calling task is suspended. If priority inheritance is
enabled, the mutex owner’s priority will be raised to
that of the suspended task, if higher. Furthermore, if
this task is waiting on another mutex, the higher
priority will propagate to its owner and so on through
all such linked mutexes. This is called priority
propagation. Not all RTOSs do this.
When a task gets a mutex, if priority ceiling is
enabled, the task’s priority is immediately raised to
the ceiling. This is a simpler way to avoid unbounded
priority inversion and it also avoids mutex deadlocks,
which occur if two tasks wait for mutexes already
owned by each other. Deadlocks are avoided by
giving all mutexes that are shared by the same tasks,
the same ceiling. Then, the first task to get one of the
mutexes blocks the other tasks from running.
A mixture of ceiling and inheritance can be useful in
some circumstances (see smx Special Features).

When a mutex with pi or ceiling is released,
staggered priority demotion occurs. This means that
the releasing task’s priority is reduced to the highest
level necessitated by pi or the ceiling of mutexes that
it still owns. (This, of course, is what would be
expected.)
Mutexes have an internal nesting count. Each time
the owner gets a mutex, its nesting count is
incremented; each time the owner releases the mutex,
its nesting count is decremented. A mutex is not
released until its nesting count reaches 0. Nesting is
necessary because called functions may get and
release the same mutex. Sometimes, mutex
dependencies can be hidden in libraries. In such
cases, using semaphores for resource protection can
result in task stalls — i.e. a task waiting for a
semaphore that it already owns.
MutexFree() allows freeing a mutex by a non-owner,
regardless of its nesting count. MutexClear() does the
same and resumes all waiting tasks with FALSE.
These are provided for special operations, such as
mutex delete and system recovery and should not be
used for normal operation. Mutexes can be deleted
when no longer needed.

Event Queues
smx_EventQueueClear(eq)
smx_EventQueueCount(eq, count, tmo)
smx_EventQueueCountStop(eq, count, tmo)
smx_EventQueueCreate(name)
smx_EventQueueDelete(*eq)
smx_EventQueueSignal(eq)

An event queue permits multiple tasks to wait for
differing counts of an event. An example of an event
queue is smx_TicksEQ, which permits tasks to wait
for specified numbers of ticks, with tick accuracy.
Event queues are useful for counting other events
such as revolutions, pulses, etc.
Services are provided to create and delete event
queues, when no longer needed. EventQueueCount()
allows a task to wait for a count of events, with a
timeout. A Stop version is provided for one-shot
tasks. A task or LSR can signal an event queue. Tasks
are enqueued differentially so that only the counter of
the first task is decremented by a signal. This
minimizes overhead, thus permitting large numbers
of tasks to wait for events of a given type.

www.smxrtos.com/rtos/kernel/smxfeatr.pdf

 7

If no task is waiting, signals are ignored. This is
unlike the multiple event semaphore, which counts all
signals. Clearing an event queue, resumes all waiting
tasks with FALSE.

Event Groups
smx_EventGroupClear(eg, imask)
smx_EventGroupCreate(imask, name)
smx_EventGroupDelete(*eg)
smx_EventGroupPeek(eg, par)

smx_EventFlagsPulse(eg, smask)
smx_EventFlagsSet(eg, smask, pcmask)
smx_EventFlagsTest(eg, tmask, pcmask, tmo)
smx_EventFlagsTestStop(eg, tmask, pcmask, tmo)

Event groups permit tasks to wait for logical
combinations of up to 16 flags. The combinations
supported are AND, OR, and AND/OR (e.g. AB +
CD). Flags can be individually set or reset. Event
groups are useful for systems which are monitoring
multiple flags and for state-machine operation.
EventGroupCreate() creates an event group with 16
internal flags and initializes the flags to imask.
EventGroupClear() resumes all waiting tasks with 0
return values. A peek service is provided to look at
event group parameters. An event group can be
deleted, when no longer needed.
EventFlagsSet() first clears flags in the preclear mask,
pcmask, then sets flags in the set mask, smask. This
permits mutually-exclusive flags, such as M and ~M,
which are useful for modes and states. If new flags
are set, all waiting tasks are tested for matches and
resumed if true. EventFlagsPulse() temporarily sets
unset flags in smask, tests waiting tasks for matches
and resumes tasks if true.
In EventFlagsTest() the 18-bit tmask specifies the
flag combination to test. Bit 16 true is AND; bit 17
true is AND/OR; neither true is OR. For AND/OR,
AND terms are separated by 0 bits. For example:
MA + nMB is represented by 11011b. If the test
condition is met, the test passes immediately and the
current task continues (or restarts). If not, it is
suspended in the eg wait queue and tmask and
pcmask are stored in its TCB.
When a match occurs, due to EventFlagsSet() or
Pulse(), pcmask is used to determine which matching
flags, if any, to clear. This is called post clear or
automatic clear. The alternative is manual clear
using EventFlagsSet(0, clear_mask). pcmask permits

clearing event flags while not clearing mode flags. In
the above example, pcmask = 01001b would clear
both A and B, but neither M nor nM.
Multiple tasks can wait at the same event group on
any combinations of flags. For each FlagSet() or
FlagPulse(), all waiting tasks are checked for matches
and resumed or restarted, if found. A combined post-
clear flag is accumulated for all flags causing matches
and those flags are cleared at the end. Thus flags are
set and reset only once, to avoid potential race
conditions.
EventGroupPeek() allows peeking at event group
parameters.

Timers
smx_TimerDup(*tmrbp, tmr, name)
smx_TimerPeek(tmr, par)
smx_TimerReset(tmr, tlp)
smx_TimerSetLSR(tmr, lsr, opt, par)
smx_TimerSetPulse(tmr, period, width)
smx_TimerStart(*tp, delay, period, lsr, name)
smx_TimerStartAbs(*tp, time, period, lsr, name)
smx_TimerStop(tmr, tlp)

TimerStart() creates a timer control block (TMCB)
and enqueues it in the timer queue (tq) for the number
of ticks specified by the delay parameter. The timer
handle is put into tmrbp.
When a timer times out, it invokes the specified LSR.
This provides a low-jitter timer vs. starting a task. If
the interval parameter is 0, the timer is a one-shot
timer, which is deleted when it times out. If the
interval parameter is not 0, the timer is a cyclic or
pulse timer, which keeps running. Each time such a
timer times out, it is immediately requeued to ensure
no loss of ticks.
When in tq, each TMCB stores a differential count
from the timer ahead of it. Thus, only the count in the
first timer is decremented. This results in low
overhead, which permits using a large number of
timers in a system.
TimerStartAbs() operates the same as TimerStart(),
except that it accepts an absolute time from system
start instead of a delay from now. It is useful to start
coordinated timers from a common base time.
TimerDup() can be used to create a duplicate timer,
tmr, with a different handle and name, but otherwise
the same settings. It is enqueued after tmr with a

 8

differential count of 0. This is another way to have a
common base time.
A pulse timer can be created from a cyclic timer,
while it is running using TimerSetPulse(), then
controlled by it. This service allows smoothly
changing width and period together. Software pulse
timers reduce the need for hardware timers. A Pulse
timer allows easily generating pulses for pulse width
modulation (PWM), pulse period modulation (PPM),
and frequency modulation (FM).
The LSR invoked at timeout, its parameter option,
and its parameter can be changed with
TimerSetLSR(), while the timer is running. Available
options are to return: par, pulse state, etime at
timeout, or number of timeouts since timer start.
TimerStop() loads time left to the next timeout into
tlp, then deletes the timer. This is commonly used to
stop a one-shot timer that is timing an event when the
event occurs. TimerPeek() returns information
concerning a running timer.

ISR and LSR Control
smx_ISR_ENTER()
smx_ISR_EXIT()
smx_LSR_INVOKE(lsr, par)
smx_LSRInvoke(lsr, par)
smx_LSRsOff()
smx_LSRsOn()

The only impact that smx has upon ISRs is:
(1) smx service calls are not permitted from ISRs.

Instead, ISRs must invoke LSRs to make them.
(2) Most ISRs begin with ISR_ENTER() and end

with ISR_EXIT() macros.
ISR_ENTER() saves volatile registers, switches to
the system stack (SS), and increments a nesting
counter. Different processors may require more or
fewer operations. ISRs can be nested. ISR_EXIT()
reverses the ISR_ENTER() actions and returns to the
interrupted task, unless its ISR is nested, an LSR is
ready, or a task switch may be needed. In this case, it
switches to the pre-scheduler. These macros are
written in assembly language and optimized for
speed.
The INVOKE() macro is used by an ISR to invoke an
LSR to perform deferred interrupt processing.
Invoking an LSR simply stores the LSR address and a
parameter in the LSR queue, lq. The same LSR can
be enqueued multiple times with the same or different

parameters. This helps to buffer transient high
interrupt loads and maintain order. ISRs and the
LSRs that they invoke run in the system stack, SS,
and do not increase the load on task stacks.
smx_LSRInvoke() is used to invoke LSRs from tasks.
This is convenient for starting or emulating I/O
operations from tasks. Disabling interrupts is
normally used to protect globals shared with tasks
and LSRs from interrupts. When it is only necessary
to protect globals shared between tasks and LSRs,
LSRsOff() inhibits LSRs, and LSRsOn() reenables
them.

System
smx_SysEtimeGet()
smx_SysStimeGet()
smx_SysStimeSet()
smx_SysPowerDown(mode)
smx_SysPseudoHandleCreate()
smx_SysWhatIs(h)

etime is elapsed time in ticks, and stime is system
time in seconds. Elapsed time is used for task
timeouts; system time is used for task sleeps.
Functions are provided to get etime and stime and to
set stime to the integer equivalent of time elapsed
from a fixed starting date and time.
smx_SysPowerDown(mode) provides a structure for
power down operations. When there is no useful
work to do, it calls sb_PowerDown(mode), which
preserves the tick counter count and performs the
actual power down operations.
When power is restored, sb_PowerDown()
determines clocks lost, starts the tick counter, and
returns the number of ticks lost to
smx_SysPowerDown(), which performs tick recovery
in a manner that preserves the proper order of timer,
task, and TicksEQ timeouts. The time to perform tick
recovery is generally very short. It depends only upon
the number of timeouts and not upon the length of
time that power was off. Operation is transparent to
the application, if sb_PowerDown() is able to
accurately determine the time lost.

Handle Table
smx_HTAdd(h, name)
smx_HTDelete(h)
smx_HTGetHandle(name)
smx_HTGetName(h)

 9

smx_HTInit()

All smx objects are identified by handles. Most smx
control blocks contain the names of smx objects.
Pseudo handles can be added to HT for ISRs, LSRs,
and other objects without names, so that smxAware
can display them by name. Functions are provided to
get a handle or a name from HT.

Other smxBase Services
sb_TMInit()
sb_TMStart(pts)
sb_TMEnd(ts, ptm)

sb_MsgDisplay()
sb_MsgOutputConst(mtype, mp)
sb_MsgOutputVar(mtype, mp)

The TM functions permit precise time measurements,
to a tick timer clock, from one start point to one or
more end points. The degree of precision may be as
low as one instruction time, depending upon the clock
rate selected for the tick timer.
Messages to the console may be enqueued, by
pointer, in the output message queue, or copied to the
output message buffer for later display by a lower-
priority task (usually idle). Error messages are
handled this way. This permits using polled UART
drivers without impacting system performance.

Ease of Use

This important smx goal is supported by the
following features.

Processor Support
SMX is shipped with support for your processor
evaluation board and tool suite. This reduces front-
end time and gets your project rolling sooner. In
addition, well-written BSP notes detailing interrupt
settings, memory mapping, and configuration
information for all supported peripherals are
included.

smxBSP is the board support package included with
SMX. See the smxBSP datasheet for a summary of
BSP services. Normally, only small changes to the
smxBSP code are needed to support the actual project
hardware.

smxBase includes smxBSP and provides additional
services used by smx and other SMX modules. See
the smxBase User’s Guide, for details.

Tool Support
SMX deliveries include project files or makefiles to
build the libraries for delivered SMX products and
the Protosystem. Detailed tool information is
provided in the SMX Target Guide, and we provide
first-line support for the tools. Hence, if you have a
problem, our team will help you, regardless of
whether the problem is with SMX or with the tools.

smxAware
smxAware shows what is going on at the task level. It
is integrated with the debugger. System and
application events can be viewed in graphical and
textual form, and smx objects can be examined, in
detail. Memory usage, stack usage, and profiling
charts help with system tuning. See the smxAware
datasheet.

Protosystem
SMX RTOS comes with a framework application
called the Protosystem. The Protosystem contains
core application code for smx and demos for the
SMX modules included in your release. Full source
code is provided. An included project file or
makefile, builds it. Running the Protosystem and
demos provides an initial confidence test that the
release is working correctly.

The Protosystem provides the framework to start your
application development. Demos are replaced with
application tasks, objects, and code. Unfinished
operating code is simulated with delays. smxAware
provides system visibility before most code even
exists!

Developing a working skeleton, while other team
members fill in detailed task code, helps to solve
integration and structure problems up front. Once
defined, tasks can be allocated processor and RAM
quotas. If developers can meet their quotas, final
integration should be smooth as glass.

www.smxrtos.com/rtos/devtools/smxaware.pdf
www.smxrtos.com/rtos/kernel/smxbsp.pdf

 10

Evaluation Kits
See www.smxrtos.com/eval for free evaluation kits
for many popular processor evaluation boards Each
incorporates BSP, Base, and Protosystem source code
with an smx library. Some include libraries and demo
code for other SMX modules. Contact our sales
department to request a custom evaluation with the
SMX modules you need.

Because most smx configuration constants can be set
from the application, it is possible to increase the
numbers of tasks, semaphores, messages, and other
smx objects, to increase stack and other sizes, to
enable or disable profiling and stack scanning, and
other things. Hence it is possible to do useful work
with an smx evaluation kit. You do not need to have
smx source code.

Using an evaluation kit gives hands-on experience
with smx, and your processor and development tools.
Having picked smx, many developers start product
development with eval kits, while licensing details
are being worked out.

Accurate Manuals
Good manuals are one of the most important things
that sets a commercial kernel apart from an in-house
or free kernel. The smx manuals have been
substantially rewritten in v4.

smx User’s Guide: A tutorial manual, which
presents the theory of smx in four main sections:
Introduction, Services, Development, and Advanced
Topics. The first section provides orientation.
Subsequent sections can be read as needed. The
development section provides information on how to
structure a multitasking application, using the
skeleton methodology, coding, and debugging.

smx Reference Manual: Provides smx service call
descriptions and a comprehensive glossary. Service
call descriptions are complete and accurate. Each
explains all details of the call, including parameters,
return values, what the call does, side-effects, and
errors, and gives usage examples.

Advanced Features

The advanced features of smx are listed here, by
category, for convenience in comparing smx to other
RTOSs. They are explained more fully in the smx
Special Features data sheet and in the smx User's
Guide.

Performance
Short Interrupt Latency permits handling high-
frequency interrupts. smx disables interrupts only
briefly in a few places, not in system calls.

Fast Task Switching allows applications to use large
numbers tasks. For a 400MHz ARM9, smx achieves
up to 250,000 task switches per second.

Layered Ready Queue is unique to smx. Enqueueing
and dequeueing times are very fast and independent
of the number of tasks in rq.

New High-Performance Heap is a bin type heap,
which overcomes the poor performance and
indeterminacy of normal RTOS heaps.

Link Service Routines (LSRs) are a unique feature of
smx, which perform deferred interrupt processing and
reduce interrupt latency.

Timers Invoke LSRs Directly, which results in low
timer jitter because LSRs cannot be blocked by tasks.

System Stack can be located in on-chip SRAM to
improve ISR, LSR, and scheduler performance.

smx Control Blocks and dynamic variables in SDAR
improves performance if SDAR can be put into fast
on-chip RAM.

Cache-Line Alignment of smx Control Blocks
improves performance of smx operations if control
blocks are in external memory.

No-Copy Block I/O from bare blocks to messages
and back improves software stack performance.

Efficient Memory Usage
System Stack used for initialization, ISRs, LSRs,
scheduler, and error manager results in much smaller
task stacks.

One-Shot Tasks allow sharing stacks from a stack
pool and do not consume stacks while waiting for
events.

www.smxrtos.com/eval
www.smxrtos.com/rtos/kernel/smxfeatr.pdf

 11

Dynamically Allocated Regions (DARs) for one-time
allocations avoid mixing data and control. Allocated
blocks can be aligned for performance.

• System DAR (SDAR) is used for smx objects
such as control blocks.

• Application DAR (ADAR) is used for the heap,
stack pool, and dynamic application objects.

Safety, Security, & Reliability
Extensive Error Checking. All smx service
parameters and numerous other things such as stack
overflow, broken queues, and out of resources are
continuously monitored, recorded, and reported.

Error Manager records each error in the current task
and in global variables.

Error Manager Hook permits easily adding user error-
specific code to the error manager.

Local Error Handling is supported by 0 return value if
a service fails and the SMX_ERR macro to determine
what happened, on a task-specific basis.

Error Manager Runs in System Stack to avoid task
stack overflows, while processing other errors.

Error Buffer records information for each error.

Event Buffer records error events in the context of
system and application events. Errors are then
displayed by smxAware relative to task switches, etc.

Error Messages are enqueued for later display by idle
task, when there is no high-priority work to do.

Stack Overflow is caught by scheduler checking of
stack pointers and stack high water marks when tasks
are suspended or stopped.

Stack High Water Mark is maintained in each task’s
TCB by scanning stacks during idle time. It can be
viewed graphically in smxAware.

Timeouts on All System Service Waits can be used to
break deadlocks and to recover from event failures.

Graceful Interrupt Overload Handling due to LSR
safe buffering of peak interrupt loads.

Unstoppable LSRs guarantee critical operations
cannot be blocked by tasks.

Self-Healing Heap is provided by automatic heap
scan and heap fix functions, which run continuously
from idle task.

Heap Recovery Function attempts to merge enough
free chunks to form a big-enough chunk for a failed
allocation.

Heap Extend Function provides another way to
recover from a failed allocation.

Heap High Water Mark helps for sizing the heap and
monitoring it for memory leaks.

Exchange Messaging assures reliable message
transfers using protected pointers and safety
checking.

Mutex Priority Inheritance promotes the priority of a
mutex owner to that of the highest priority waiting
task to avoid unbounded priority inversion.

Mutex Ceiling Priority provides a simpler way to
avoid unbounded priority inversion and also prevents
mutex deadlocks.

SDAR isolates smx objects from application objects,
such as pools, stacks, etc., which are in ADAR.

Debug Aids
smxAware graphical and textual kernel awareness
tool shows the system-level view.

System Event Logging into the event buffer (EVB)
for later display by smxAware aids visualization of
system operation.

User Event Macros can be placed in application code
and permit storing up to 6 variables for later viewing
via smxAware.

Stack Pads allow operation to continue despite stack
overflows. Easily removed for release.

Precise Profiling of tasks, ISRs, and LSRs gives exact
measures of how code is performing. Resolution is to
the tick timer clock.

Precise Multi-Path Time Measurements of execution
times, response times, interrupt latencies, etc. help to
improve code performance.

Use of Enums, Object Names, and Control Block
Pointer Types for Links makes debugging easier.

Debug Chunks in the Heap store helpful information
per chunk and have fences around data blocks to
catch block overflows.

New Heap Functions aid diagnosis of heap problems.

 12

Ease of Use
Heap Configuration via a Single Constants Array
allows the heap to be easily tuned to a specific
application.

smx_SysPowerDown(mode) provides structure at the
RTOS level to put the system into a specified power
saving mode, then performs accurate tick recovery
when power is restored.

Message Exchanges provide a simple, flexible way to
exchange messages.

Message Priorities allow higher priority messages to
bypass lower priority messages at exchanges.

Pass Exchanges cause server tasks to operate at
message priorities set by client tasks.

Message Broadcast Exchanges simplify sending
messages to multiple receivers.

Multicasting and Proxy Messages enable powerful
new operations.

Message Make allows making a message from any
block, thus permitting no-copy processing.

Message Unmake allows unmaking a message into its
original block.

Event Groups allow AND, OR, and AND/OR
combinations of flags. Selective pre-clear supports
mutually-exclusive flags. Selective post-clear clears
used event flags, while preserving mode flags.

Hooked Exit & Entry Routines transparently save and
restore extended task context to support FPUs, other
coprocessors, and global objects.

Pipes with Variable Widths from 1 to 127 bytes can
be used to pass bytes, pointers, or small data packets
for both I/O and intertask communication.

Accurate Task Timeouts permit resolution as low as
one tick, with low overhead. This simplifies code by
allowing task timeouts to be used for accurate timing.

Pulse Timer allows generating pulses for pulse width
modulation (PWM), pulse period modulation (PPM),
and frequency modulation (FM).
smx_SysPowerDown(mode) provides structure at the
RTOS level to put the system into a specified power
saving mode, then performs tick recovery when
power is restored.

Additional References

1. smx Special Features.
2. smxAware datasheet.
3. smx++ datasheet.
4. smxBSP datasheet.

smx manuals are available for review and may be
downloaded from www.smxrtos.com.

© Copyright 2013-2015 Micro Digital, Inc. \\server\d\marketing\lit\datasheets\smx.doc 5-11-15

www.smxrtos.com/manuals.html

