

Change Your OS,
 Not Your Code

Save time.
Stay on Schedule.

Reduce your work.

Re-use Your Code with OS Changer

Page 2 of 13

Executive Summary

In embedded software development, we go to great lengths to save time. We spend a lot
of time learning about the developer’s tools and setting up the environment. We
perform these tasks in order to save time.

OS Changer is a tool for saving time in embedded development.

OS Changer was created to help developers reduce the amount of re-work necessary
during the transition to a new operating system. It recognizes your old OS API calls in
the application and automatically handles the work to make them run with your new
operating system. It manages all aspects of the porting process, from differing function
names to the parameter types. All of this is done without affecting the performance of
your application. OS Changer also includes profiling features for application
optimization. It is a tool for developers to re-use existing application code, so they don’t
have to throw away months and years of work or manually perform the time-consuming
task of porting their software every time the operating system platform changes.

OS Changer has been verified with many operating system vendors and used by leading
companies all over the world. It supports porting your application from major operating
systems including VxWorks, pSOS, Linux/POSIX, µITRON, Nucleus, Windows(Win32),
µC/OS, FreeRTOS and RTLinux. It supports porting your application to multiple target
operating systems, including VxWorks, Android, Linux, RT Linux, Windows, LynxOS,
QNX, UNIX, Solaris, NetBSD, µITRON, MQX, Nucleus, ThreadX, T-Kernel and
FreeRTOS.

Note about this paper:

In some places, purely developer topics are discussed. The topics aren’t overly technical, but they

sometimes make references to computer science topics. These boxes are meant to dig a little

deeper into the technical details revolving around OS Changer. If you aren’t technical or you

would rather not know, feel free to skip over these sections.

Page 3 of 13

PREFACE –
(Read this if you are in the embedded market)

Time constraints and change are the norm

Let’s face it…

Most people will never understand the intricacies of an embedded system. Even among
coders and programmers, working on embedded systems is rare. In today’s job market,
many “programmers” will never see the inside of a development board, manipulate
registers on a chip, or write an Ethernet driver. They’ll never understand the
relationship between a compiler and a linker. They’ll never know how to debug code.

And they’ll never understand the embedded developer’s most critical resource –

Time and Effort.

That puts embedded developers in a special class.

As embedded engineers, we go to great lengths to save time. We spend a lot of time
learning about the development system - the hardware, the tools, the operating system,
the drivers and the application specifications. We have to spend time setting up the
environment and getting the tools configured so that we can quickly write, compile, and
debug our application code. Many embedded engineers create elaborate setups to ease
the development process. They create special scripts and shortcuts and directory
structures to ease the development time.

Why do we do that? Well, we do it to make it easier on ourselves, but really it boils down
to saving time.

The focus on time is a simple way of communicating your progress on the development
project. Depending on the technical ability of your manager, they may or may not be
interested in all the technical details of the project. They may want to hear about the
byte-swapping routing you wrote or how efficiently your code is running. But, when it
comes down to it, they only care about “Time.” Is it on schedule? When will it be done?
How much longer? All these questions are about time.

Therefore, we are always on the lookout for tools that helps us save time and effort.

Page 4 of 13

In embedded development, many activities affect the development time and schedule.
Here are just a few:

- New software features
- Changing out hardware
- Adding a new device
- Changing specifications
- Moving to a new tool chain
- Changing or upgrading the OS
- Upgrading to a new tools version
- Changing drivers
- Adding more memory to the system
- Adding new output devices to the application

That brings us to the next point. All of the items above require something to change.
Whether it’s a new feature or a new board, changes will be needed in your software.

If you’ve been in the embedded world for any length of time, you’ve come to accept that
some type of change is reasonable and expected. What isn’t necessary is the idea that all
change is the same. There are good changes and bad changes. A good change is a change
to improve performance or to eliminate inefficient operations. A bad change is to
perform unnecessary rework that is tedious and error-prone.

Bad changes can be project killers. After weeks of toiling away at coding, it makes no
sense to start all over again. It’s much more effective if you can re-use your existing code
and keep your application development moving forward.

This paper is about a product from MapuSoft called OS Changer. It was developed to
help embedded engineers who are changing or upgrading operating systems without the
need to change your application software. OS Changer allows you to re-use your existing
code without a huge amount of rework or re-writing. It helps make the change faster,
more efficient, and with fewer errors.

And that means that you are saving time. Even during change.

Page 5 of 13

Introduction

OS Changer is a tool for saving time. It is specifically written for embedded engineers
who need to change operating systems. It supports applications written in C/C++ and is
provided in full source-code format. If you are considering a change in real-time
operating systems, then this tool should be part of your arsenal.

OS Changer was created to help developers eliminate the re-work necessary during the
transition to a new operating system or when you go through an OS upgrade. Our
customers have already spent significant time writing their application, creating
software that ranges in millions lines of code. OS Changer allows them to re-use existing
application code, so they don’t have to throw away months and even years of work.

By eliminating the manual porting effort, OS Changer saves the project schedule by
shortening the time to market. Choose the appropriate OS Changer Interface for your
current OS. OS Changer then uses a Cross-OS target specific module to provide the
connection to your new target OS.

OS Changer supports porting your application from the major operating systems
including VxWorks, pSOS, Linux/POSIX, uITRON, Nucleus, Windows(Win32), µC/OS,
FreeRTOS and RTLinux.

It supports porting your application to various target operating system including
VxWorks, Android, Linux, RT Linux, Windows, LynxOS, QNX, UNIX, Solaris, NetBSD,
uITRON, MQX, Nucleus, ThreadX, T-Kernel and FreeRTOS.

OS Changer reduces the extra time you spend in learning a new operating system’s API,
allows you reuse your existing code, and can help in profiling and optimizing your code.

OS Changer is the tool to seamlessly move to your new operating system.

Page 6 of 13

Making the Change with OS Changer -

Sometimes bad things happen
in embedded development.

Here’s a common scenario. You’ve made it through part of the development project.
There have been some minor hang-ups getting started, but development is moving along.
You have parts of your application running and you are steadily making progress on the
specs. The schedule is a little tight, but so far so good.

Then suddenly – out of nowhere you get the word that you are switching operating
systems.

What do you do then? Well, you start to panic a bit. There’s a good chance that all of that
old code is going to need to be re-written. However, that’s exactly were OS Changer
should be used.

OS Changer makes that transition easier. It allows you to use your old code without
going through the tedious process of changing all the function calls, verifying that all the
parameters are the same type and order, the return values are the same, the
initialization code is the same, and the startup sequences of the operating system are all
in the same order.

The reason why this is important is simple. After you’ve already invested time and effort
into your application, making these kinds of changes in your application code for a new
operating system is going to be tedious and error-prone. It’s best to try to minimize as
many failure points as possible.

Your focus should be on minimizing the amount of re-work. You should also want to
minimize the introduction of programming errors into the transition process. OS
Changer keeps this transition effort to a minimum and reduces much of the time-
consuming, labor-intensive work that distracts you from the actual product
development.

You may be asking yourself how reasonable it is to expect an operating system change in
the middle of a project. It happens more than you’d think. Of course, the decision to
switch operating systems is a difficult one and often unexpected at the start of the
project. No developer goes into a project saying, “Hey, let’s switch operating systems in
the middle of the project.”

Page 7 of 13

There are often technical reasons to switch operating systems. There could be hardware
issues or there could be functionality deficiencies in the current operating system. There
are also executive decisions to switch or business reasons such as acquisitions that
require a change of the operating system. When Linux first came around, it wasn’t
uncommon to see projects switching for business reasons (no royalties). More recently,
many development projects are switching to Android, a new operating system
introduced by Google.

Regardless of the reason, OS Changer makes that transition simple and efficient.

What are the technical reasons to switch operating systems?

Outside of business decisions and money-matters, there are actually several technical reasons to

switch operating systems. Here are a few:

- Lack of drivers/component software

- Discontinued support for your hardware platform

- Incomplete support of interrupt handling

- Dismal performance at basic tasks like start-up, memory allocation, interrupt

handling, etc.

- Missing functionality (e.g. mutex, shared memory, process support, signals, etc.)

- Lack of full register save on context switch (e.g. think register windows via SPARC)

- Moving to a certified or secure operating system

In all cases, the pain of switching can be eased if you use OS Changer.

BSPs and Drivers

When making the change to a new operating system, you may also be changing hardware at the

same time. When this happens, the question of a BSP (board support package) and device driver

software often arise.

OS Changer eliminates the re-work for your application software. While the OS Changer I/O

interface can be used for device driver development, there will still need to be BSP and device

driver code supplied by the operating system vendor.

Page 8 of 13

Mythbusting - It’s not a wrapper.

Some embedded engineers attempt to write their own wrappers for porting software.
This often turns out to be a mistake that creates more work. They don't realize the
magnitude of the effort involved and often they end up with a poor implementation.
Generally this is due to fundamental differences in behavior of the kernel resources
between the two operating systems. OS Changer contains most of the features necessary
to switch operating systems and does not follow a typical wrapper implementation
method.

Using wrappers is often a way to ‘short-cut’ the transition process from old application
code to new application code. Wrappers are useful in some cases. But, to call OS
Changer a wrapper is misleading.

OS Changer is a full-featured porting tool that eases your effort across operating systems.
OS Changer has been verified with many operating system vendors and used by leading
companies all over the world.

It recognizes your old OS API calls in the application and automatically handles the
work to make them run with your new operating system. It manages all aspects of the
porting process, from differing function names to the parameter types. All of this is done
without affecting the performance of your application. OS Changer also includes
profiling features for application optimization.

On Wrappers…

A wrapper is a name used to describe a serious of functions that do nothing but convert input/output

parameters from one function to another. An example of a wrapper is this:

int Old_OS_Wrapper_Function_call_1 (int id){

 unsigned int ReturnCode;

 ReturnCode = New_OS_call((TASK_ID)id);

 return ((int)ReturnCode);

};

This is used as a shortcut for going through the entire code base and changing all the references to the old

function call. A wrapper has its place in programming, but it is not the most elegant solution. When you

are changing APIs, transitioning to new feature, or deprecating old calls, wrappers are a nice way to help

make the transition. They should be used as a short-term solution though. Using them for a full application

can be error-prone and dangerous.

Ideally, a wrapper-less call will NOT make references to the new OS calls, but instead will actually

contain the implementation code required to accomplish the old call as shown below:

int Old_OS_Wrapper_Function_call_1 (int id){

 unsigned int ReturnCode;

 /* your own code implementation, below */

 return ((int)ReturnCode);

};

Page 9 of 13

Optimization and Profiling

OS Changer also includes profiling functionality. By using the profiler with OS Changer,
you are able to optimize your application to meet your own specific performance
requirements. The real benefit of the profiling comes during the transition from one
operating system to the other. You’ll be able to make sure that your application is
running exactly the same on the new operating system as it was on the old operating
system.

Why should you worry about the performance during your transition? Each operating
system in the embedded market has small discrepancies and operating nuances. While
they all work the same in theory, it’s the small differences that can make the biggest
difference in performance.

With the OS Changer profiling options, you can record multiple sessions and track of the
metrics for performance. Then, as you make the change to the new operating system,
you can keep a running record of the application’s performance. As you are progressing,
you can generate a Timing Comparison Report to compare two different sets of
measurements and reports. This will help you guarantee that your application is
performing efficiently and accurately.

For example, in operating systems there are often differences in the start-up time of the
operating system, the creation of new tasks, or the invocation of semaphores. These
small changes could cause unexpected behavior in your application. Or, even worse,
these differences could cause a major slowdown of your application.

By using the profiling option with OS Changer, you can compare and contrast various
performance metrics whenever you change your OS and hardware platforms. You take

What is optimization?

Optimization can mean many things in embedded systems. It could reference the initialization of

the start-up task, interrupt handling, or a general improvement in code size. In this paper, when

we say optimization, we are referencing ‘application-specific performance and code-size

optimization,’ - using OS Changer to make improvements to your application’s performance and

memory footprint.

The optimization with OS Changer can be used to profile the performance of your application or

it can be used to profile the interface and interaction between your application and the operating

system.

Page 10 of 13

the metrics before the change and compare them with your metrics after the change by
using the Timing Comparison Report. It’s a convenient way to maintain application
performance.

The OS Changer profiling option also makes it easy to view the data. You can view the
data numerically or graphically. The graphic view can be displayed as a bar graph, line
graph, pie chart, or scatter chart. You can also easily switch between the views to find
the display option that best suits you.

Re-Cap

OS Changer eases the transition from one operating system to another. When you are
making the change, it’s important to re-use as much of your existing code base as
possible. Further, you want the transition to be easy and painless. It helps make the
change faster, more efficient, and with fewer errors.

OS Changer supports porting your application from the major operating systems
including VxWorks, pSOS, Linux/POSIX, uITRON, Nucleus, Windows(Win32), µC/OS,
FreeRTOS and RTLinux.

It supports porting your application to various target operating system including
VxWorks, Android, Linux, RT Linux, Windows, LynxOS, QNX, UNIX, Solaris, NetBSD,
uITRON, MQX, Nucleus, , ThreadX, T-Kernel and FreeRTOS .

OS Changer is written in C and is provided in source code format. It could be used
within your C/C++ and/0r Ada applications.

Page 11 of 13

About Mapusoft

MapuSoft Technologies (MT) is the number one provider of embedded software re-
usability solutions and services that are designed to protect software investment by
providing customers a greater level of flexibility and control with product development.
In addition to off-the-shelf tools, MT offers porting, integration, support and training
services to help developers easily migrate from legacy platforms to the next generation.
We believe that our advanced software and vision will revolutionize the embedded
software industry. We are working hard to provide software that is practical, familiar,
financially reasonable, and easily operable. We provide full source code with no royalty
fees. Our licensing strategy makes it extremely affordable for you to incorporate our
products into your embedded applications. In addition, our attention to engineering
detail provides you with robust software and requires minimal technical maintenance.

About OS Changer

OS Changer is a C/C++ source-level virtualization technology that allows you to easily
re-use your software developed for one OS on another OS, while providing real-time
performance. It eliminates the manual porting effort, saves money and shortens the
time to market. The appropriate OS Changer Interface connects to your existing
application that was developed on your current OS, while the Cross-OS target specific
module (specific to your target OS) provides the connection to the OS you are moving to.

For more information

 To download MapuSoft’s free software evaluation visit:
http://mapusoft.com/downloads/

 To learn more about our licenses and request a quote visit:
http://connect.mapusoft.com/contactus.html

 OS Changer Porting Kit Overview Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/os-changer.pdf

 OS Changer - VxWorks Porting Kit Technical Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/VxWorks-
techsheet.pdf

 OS Changer - pSOS Porting Kit Technical Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/pSOS-techsheet.pdf

 OS Changer - Nucleus Porting Kit Technical Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/Nucleus-
techsheet.pdf

http://mapusoft.com/downloads/
http://connect.mapusoft.com/contactus.html
http://www.mapusoft.com/wp-content/uploads/documents/os-changer.pdf
http://www.mapusoft.com/wp-content/uploads/documents/VxWorks-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/VxWorks-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/pSOS-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/Nucleus-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/Nucleus-techsheet.pdf

Page 12 of 13

 OS Changer – Windows Porting Kit Technical Datasheet:
http://www.mapusoft.com/wp-content/uploads/documents/Windows-
techsheet.pdf

 OS Changer Porting Kit API coverage and feature support information please
click here for the current Release Notes: http://www.mapusoft.com/wp-
content/uploads/documents/Release_Notes.pdf

Contact Information

For more information about OS Changer or Mapusoft, please contact us at:

US Headquarters

MapuSoft Technologies, Inc.
Unit 50197
Mobile, AL 36605

Tel: (251) 665-0280
Toll Free: 1-877-MAPUSOFT (1-877-627-8763)
Fax: (251) 665-0288

E-mail: info@mapusoft.com or sales@mapusoft.com

For a complete listing of International Offices, please click here:
http://mapusoft.com/contact/

http://www.mapusoft.com/wp-content/uploads/documents/Windows-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/Windows-techsheet.pdf
http://www.mapusoft.com/wp-content/uploads/documents/Release_Notes.pdf
http://www.mapusoft.com/wp-content/uploads/documents/Release_Notes.pdf
mailto:info@mapusoft.com
mailto:sales@mapusoft.com
http://mapusoft.com/contact/

Page 13 of 13

Mapusoft’s Complete Product Line:

