
© Percepio November 2019

WHITE PAPER

5THE MOST COMMON
RTOS DEVELOPMENT
BUGS AND HOW TO SPOT THEM

Page 1

The main job of an RTOS is to provide multitasking, where
several program modules—or tasks—can execute in parallel
to achieve a common goal. The RTOS creates an illusion
of parallel execution by rapidly switching between tasks.
Developers can retain some control over elements such as
RTOS task priorities, which in turn enables deterministic
real-time behavior, but they also lose some control over the
finer details. For instance, the program flow is no longer
apparent from the source code, since the RTOS decides
which task to execute at any given moment.

What makes RTOS-based development so difficult is that
RTOS tasks are not isolated entities, but have dependencies
that may delay task execution in unexpected ways. Subtle
coding choices can result in elusive errors or performance

issues in the final product. A set of seemingly simple RTOS
tasks can result in surprisingly complex runtime behavior
when executing together as a system; there can be countless
execution scenarios that are impossible to fully cover by
testing or code reviews.

The challenge for developers is that when development
moved up the abstraction ladder—from assembly code and
super loops to C and an RTOS with scheduling—debugging
tools for real-time application development didn’t keep up.
While standard debugging tools are still mostly focused
on breakpoints and single-stepping through source code,
RTOS trace and visualization gives developers full insight
into the application’s behavior at system level.

What makes RTOS-based development so difficult is that
RTOS tasks are not isolated entities, but have dependencies
that may delay task execution in unexpected ways.

When using a real-time operating system (RTOS), embedded developers
work at a higher level of abstraction, similar to the shift from programming
in assembly to C, which can make it easier to design complex applications.
But while an RTOS reduces the complexity of the application source code,
it does not reduce the inherent complexity of the application itself. That
can make the application difficult to validate and debug.

WHAT MAKES
RTOS DEVELOPMENT SO HARD?

WHITE PAPER

© Percepio November 2019

We’ve identified five of the most common real-time application bugs.
Using RTOS trace and visualization, we show how developers can work at a
higher abstraction level and capture timing and synchronization aspects of
their application that traditional debuggers can’t see.

1. CPU Starvation
 Symptoms: • Tasks run slowly or not at all

In embedded systems using multitasking, some tasks
may become starved of CPU time. A common reason is
that task priorities are wrong. Higher-priority tasks always
execute before lower-priority tasks, but if the former use

too much CPU time, the latter may receive too little CPU
time to do their jobs. This is known as task starvation.

A naïve fix would be to raise priorities of the
affected tasks, but this ultimately renders prioritization
useless. Instead, reserve high priority for tasks that are
predictable, execute in a recurring pattern, and have a
short execution time compared to the recurring interval.
High-priority, time-critical tasks that consume a lot of CPU
may need to be split into several tasks. This isolates the
time-critical elements in a small, high-priority task which
then alerts a medium- or low-priority task to do the bulk of
the processing.

Page 2

Starvation occurs when CPU load approaches 100%.

2. Jitter
 Symptoms: • Poor control performance

• Intermittent data loss or malfunction

When a task is supposed to execute at regular intervals,
such as to adjust motor speed every 5 milliseconds, the
system is sensitive to random delays, also known as jitter.
When a task experiences jitter, it must wait more than
its intended sleep time before the next activation. While
minor jitter is hard to avoid and may not be a problem,
excessive jitter is a different story.

The visible symptoms of excessive jitter can be poor control
performance and intermittent data loss. The cause can be

CPU starvation, which is fixed by getting the task priorities
right and avoiding long-running high-priority tasks, but there
are several other possible causes, such as suboptimal RTOS
configuration. Developers should also look at the RTOS tick
rate (how often the RTOS timer interrupt occurs). Ideally, the
time between two ticks should be much shorter than the
period time of the most frequent tasks in the system.

X AXIS: TIMELINE

Y AXIS: TIME IN
MILLISECONDS

5 MS BETWEEN
MOST TASK
ACTIVATIONS

7 MS, 6 MS ON TWO
OCCASIONS, 4 MS

Learn more about jitter

Learn more about CPU starvation

© Percepio November 2019

https://percepio.com/rtos-debug/jitter/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com
https://percepio.com/rtos-debug/cpu-starvation/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com

Page 3

3. Priority Inversion
 Symptoms: • System momentarily stops responding

• System crashes randomly

An RTOS with a fixed-priority scheduler should schedule
high-priority tasks ahead of those of lower priority. However,
the inverse can sometimes occur and the lower-priority tasks
get run first. This condition is called priority inversion, and it
can occur in conjunction with a synchronization object such as a

message queue or a mutex. Priority inversion can be
mitigated, provided the underlying RTOS supports
so-called priority inheritance, but completely eliminating it
requires careful application design. The trick is to identify
that it is occurring.

LOW-PRIORITY TASK –
takes a binary semaphore
to protect a critical section

Green task should
run until it releases
the semaphore,
allowing red task
to proceed.

For some reason, such
as a timed wait that has
expired, a medium-priority
(orange) task executes
ahead of the green task,
blocking higher-priority
red task without holding
the semaphore.

HIGH-PRIORITY TASK –
pre-empts the green task
and tries to take the same
semaphore but is blocked.

Learn more about priority inversion

4. Deadlock
 Symptoms: • Tasks suddenly stop executing, although no higher priority tasks are running

A deadlock occurs when two or more application tasks
are blocked waiting for each other, leaving both tasks

unable to proceed. Generally speaking, a deadlock can
be a fatal condition, so identification is critical.

Yellow task takes
semaphore 2 and
is pre-empted by
red task, which has
higher priority.

Yellow task gets to
run again and tries
to take semaphore
2, which is held by
the red task.

Red task succeeds in
taking semaphore
1 but blocks on
semaphore 2,
which is taken.

• The two tasks block each other
and neither of them can continue
execution.

• Deadlock is unsatisfactorily
resolved by a timeout (the orange
event) in the red task. It could not
acquire both semaphores, so it
released the one it held and went
back to sleep, which allowed
yellow task to take semaphore
1, run to completion, and release
both semaphores.

Learn more about deadlock

© Percepio November 2019

https://percepio.com/rtos-debug/prio-inversion/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com
https://percepio.com/rtos-debug/deadlock/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com

© Percepio November 2019

5. Memory Leaks
 Symptoms: • Memory allocation fails during operation

How to Find—and Fix—RTOS Development Bugs

Dynamic memory allocation is typically not recommended
for embedded software, but is sometimes motivated for
various reasons (right or wrong). Moreover, third-party
software libraries or external development teams may
use it without the primary developer’s knowledge.
The catch with dynamic memory allocation is that every
allocated block of memory must be freed once the memory
block is no longer in use. Any missed case will cause a
memory leak and the application will eventually run out
of memory.

A memory leak is especially dangerous if it only occurs
occasionally as a slow memory leak is easily missed
during functional testing but can cause critical errors
later in a deployed unit. Given the long-running nature
of many embedded systems, combined with potentially
deadly or spectacular failures of safety-critical systems, it
is important to identify and fix memory leak bugs early.
With Tracealyzer, developers can monitor RTOS calls for
dynamic memory allocation and highlight suspected
memory leaks.

FIND YOUR BUGS FAST!
Download a free, fully functional evaluation of Tracealyzer
at https://percepio.com/download.
The installer includes a pre-recorded demo trace so you can quickly explore all 30+ interconnected
views. It is available for leading RTOSes and Linux systems and supports most 32-bit and 64-bit
processors out-of-the-box. The Tracealyzer tool runs on Windows and Linux hosts.

Learn more about memory leaks

These are just the five most common RTOS development
bugs, but there can be countless others hiding in your code.
You can try to guess your way through debugging, trying
one thing after another to get the application to run properly.
But to solve the problem, you need to understand the specific
sequence of software events that caused it, including the

interactions between the application and the RTOS. Traditional
debugging tools cannot offer this insight.

RTOS trace visualization, which can be thought of as a
slow-motion video of the application’s internals, provides
confidence that an RTOS application runs as designed and
can be the fastest way to detect and correct bugs.

percepio.com

The Memory Heap Utilization
view shows the amount of
currently allocated memory
over time.

https://percepio.com/download/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com
https://percepio.com/rtos-debug/memory-leaks/?utm_source=percepio_com&utm_medium=wp_topfivebugs&utm_campaign=percepio_com
https://percepio.com/

